首页> 外文期刊>Philosophical Magazine, A. Physics of condensed matter, defects and mechanical properties >Defect production, annealing kinetics and damage evolution in alpha-Fe: an atomic-scale computer simulation
【24h】

Defect production, annealing kinetics and damage evolution in alpha-Fe: an atomic-scale computer simulation

机译:α-Fe中的缺陷产生,退火动力学和损伤演变:原子级计算机模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Radiation-induced microstructural and compositional changes in solids are governed by the interaction between the fraction of defects that escape their nascent cascade and the material. We use a combination of molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations to calculate the damage production efficiency and the fraction of freely migrating defects in alpha-Fe at 600 K. MD simulations provide information on the nature of the primary damage state as a function of recoil energy, and on the kinetics and energetics of point defects and small defect clusters. The KMC simulations use as input the MD results and provide a description of defect diffusion and interaction over long time and length scales. For the MD simulations, we employ the analytical embedded-atom potential developed by Johnson and Oh for alpha-Fe, including a modification of the short-range repulsive interaction. We use MD to calculate the diffusivities of point defects and small defect clusters and the binding energy of small vacancy and interstitial clusters. We show that, at temperatures below about 600 K, small interstitial clusters form prismatic dislocation loops which migrate in one dimension with a very low activation energy E-a approximate to 0.1 eV. We also present results of MD simulations of displacement cascades at energies up to 20 keV. The results show that, for recoil energies above 5 keV, interstitials are produced in the form of small prismatic loops with a high probability, but vacancies are not. The MD results are then combined with a KMC simulation of defect interaction and diffusion, which includes the one-dimensional glide of small interstitial loops. The results provide a clear picture of the damage annealing process and show that for 20 keV cascades the escape probability for both vacancies and interstitials is about 65%. This results in a freely migrating defect production efficiency of 20% of the total defect production predicted by the modified Kinchin-Pease model (the displacements per atom standard). The capability of the hybrid MD-KMC method for carrying out long length and time scale simulations of damage evolution in irradiated materials is emphasized. [References: 57]
机译:辐射引起的固体微观结构和组成变化受逃逸其新生级联的缺陷分数与材料之间相互作用的支配。我们使用分子动力学(MD)和动力学蒙特卡洛(KMC)模拟的组合来计算损伤产生效率和600 K时α-Fe中自由迁移缺陷的分数。MD模拟提供了有关主要损伤性质的信息状态是反冲能量的函数,也是点缺陷和小的缺陷簇的动力学和能量学的函数。 KMC仿真将MD结果用作输入,并描述了长时间和长距离范围内的缺陷扩散和相互作用。对于MD模拟,我们使用Johnson和Oh开发的用于α-Fe的分析性嵌入原子电势,包括对短程排斥相互作用的修改。我们使用MD来计算点缺陷和小缺陷簇的扩散率以及小空位和间隙簇的结合能。我们表明,在低于约600 K的温度下,小的间隙团簇形成棱柱形位错环,这些环在一个维中以非常低的活化能E-a迁移,接近0.1 eV。我们还介绍了在能量高达20 keV时位移级联的MD模拟结果。结果表明,对于高于5 keV的反冲能量,间隙以小棱柱形环的形式产生的可能性很高,而空位则不会。然后将MD结果与缺陷交互作用和扩散的KMC模拟相结合,其中包括小的间隙环的一维滑移。结果提供了损伤退火过程的清晰图片,并显示了对于20 keV级联,空位和间隙的逸出概率约为65%。这样可以产生自由迁移的缺陷产生效率,该效率是修正的Kinchin-Pease模型预测的总缺陷产生量的20%(每原子标准位移)。强调了混合MD-KMC方法在辐射材料中进行损伤演化的长时尺度模拟的能力。 [参考:57]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号