首页> 外文期刊>Physics in medicine and biology. >The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.
【24h】

The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.

机译:通过使用低能伽马射线/ x射线源进行近距离放射治疗,金纳米粒子辅助放射治疗(GNRT)的剂量学可行性。

获取原文
获取原文并翻译 | 示例
           

摘要

The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. E(avg) < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: (125)I, 50 kVp and (169)Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using (125)I, 50 kVp and (169)Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g(-1), macroscopic dose enhancement was 116, 92 and 108% for (125)I, 50 kVp and (169)Yb, respectively. For a tumor loaded with 7 mg Au g(-1), it was 68, 57 and 44% at 1 cm from the center of the source for (125)I, 50 kVp and (169)Yb, respectively. The estimated MDEF values for (169)Yb were remarkably larger than those for (192)Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor region due to the presence of gold nanoparticles during low-energy gamma-/x-ray irradiation. The radiation sources considered in this study are currently available and tumor gold concentration levels considered in this investigation are deemed achievable. Therefore, the current results strongly suggest that GNRT can be successfully implemented via brachytherapy with low energy gamma-/x-ray sources, especially with a high dose rate (169)Yb source.
机译:金纳米颗粒在肿瘤中的优先积累和由于金的高原子序数而增加的光电吸收共同解释了在金纳米颗粒辅助放射治疗(GNRT)期间显着增加肿瘤剂量的可能性。在临床上可实施GNRT的许多可能方法中,使用低能伽马射线/ x射线源(即E(avg)<100 keV)的近距离放射治疗方法似乎是高度可行和有前途的,因为它可以轻松实现某些GNRT的技术和临床要求。因此,当前的研究使用以下来源研究了实施GNRT的剂量学可行性:(125)I,50 kVp和(169)Yb。具体而言,进行蒙特卡洛(MC)计算以确定宏观剂量增强因子(MDEF),其定义为在肿瘤照射过程中存在和不存在金纳米颗粒的情况下,肿瘤区域中平均剂量的比值,以及载有金纳米颗粒的肿瘤内的光/俄歇电子能谱。当前的研究表明,使用(125)I,50 kVp和(169)Yb来源以及金纳米粒子可以实现显着的肿瘤剂量增加(例如> 40%)。当在负载18 mg Au g(-1)的肿瘤中距源中心1.0 cm处进行计算时,(125)I,50 kVp和(169)Yb的宏观剂量增强分别为116、92和108%。 。对于负载7 mg Au g(-1)的肿瘤,距源中心1 cm处分别为(125)I,50 kVp和(169)Yb,分别为68%,57%和44%。 (169)Yb的估计MDEF值明显大于(192)Ir的MDEF值,对于18 mg Au和7 mg Au病例,平均分别高出约70%和30%。当前的MC研究还显示,由于存在电子,在肿瘤区域内俄歇电子的光电子注量和光谱发生了显着变化(例如,超过两个数量级),并且产生了大量俄歇电子(例如,与光电子数量相当)。低能γ/ x射线辐照过程中的金纳米颗粒。该研究中考虑的辐射源目前可用,并且该研究中考虑的肿瘤金浓度水平被认为是可以实现的。因此,当前结果有力地表明,可以通过近距离放射疗法,以低能量的γ/​​ x射线源,特别是高剂量率(169)Yb源,来成功实施GNRT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号