...
首页> 外文期刊>Physics in medicine and biology. >Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method
【24h】

Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method

机译:使用双示踪剂管理方法分离输入功能,可在单次PET扫描中快速测量定量CMRO2和CBF

获取原文
获取原文并翻译 | 示例
           

摘要

Cerebral metabolic rate of oxygen ( CMRO2), oxygen extraction fraction (OEF) and cerebral blood flow( CBF) images can be quantified using positron emission tomography ( PET) by administrating O-15-labelled water ((H2O)-O-15) and oxygen ( O-15(2)). Conventionally, those images are measured with separate scans for three tracers (CO)-O-15 for CBV, (H2O)-O-15 for CBF and O-15(2) for CMRO2, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach ( Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO2 rapidly by sequentially administrating (H2O)-O-15 and O-15(2) within a short time. Because quantitative CBF and CMRO2 values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model- based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO2 were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO2 values by the DARG approach did not exceed the acceptable range, i. e., errors in those values were within 5%, when the area under the curve in the input function of the second tracer was larger than half of the first one. Bias and deviation in those values were also compatible to that of the conventional method, when noise was imposed on the arterial TAC. We concluded that the present calculation based methods could be of use for quantitatively calculating CBF and CMRO2 with the DARG approach.
机译:可以使用正电子发射断层扫描(PET)通过施用O-15标记的水((H2O)-O-15)定量脑氧代谢(CMRO2),氧提取分数(OEF)和脑血流(CBF)图像和氧气(O-15(2))。通常,这些图像是通过分别扫描三个示踪剂(CBV)(CO)-O-15,用于CBF的(H2O)-O-15和用于CMRO2的O-15(2)来测量的,并且两次扫描之间还有额外的等待时间为了最大程度地减少以前的示踪剂对放射性的影响,因此需要较长的研究时间。我们提出了一种双示踪放射自显影(DARG)方法(Kudomi等人2005),该方法使我们能够通过在短时间内顺序施用(H2O)-O-15和O-15(2)来快速测量CBF,OEF和CMRO2。 。由于定量的CBF和CMRO2值对动脉输入功能敏感,因此有必要获得准确的输入功能,并且这种方法的缺点是需要将测量的动脉血液时间活动曲线(TAC)分离为纯水和氧气输入功能第一个注入的示踪剂残留放射性的存在。对于这种分离,需要频繁的手动采样。本文介绍了两种计算方法:即线性方法和基于模型的方法,用于将测得的动脉TAC分为水和氧气成分。为了验证这些方法,我们首先通过结合在一系列针对正常人的PET研究中获得的水和氧气输入功能,为DARG方法生成了血液TAC。然后通过本方法将合并的数据分为水和氧气成分。使用那些分开的输入函数和组织TAC计算CBF和CMRO2。通过DARG方法得出的CBF和CMRO2值的定量精度未超出可接受范围,即例如,当第二个示踪剂的输入函数中曲线下方的面积大于第一个示踪剂的一半时,这些值的误差在5%之内。当噪声施加于动脉TAC时,这些值的偏差和偏差也与常规方法兼容。我们得出的结论是,当前的基于计算的方法可用于用DARG方法定量计算CBF和CMRO2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号