首页> 外文期刊>Physics in medicine and biology. >Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies.
【24h】

Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies.

机译:多光谱光学荧光层析成像中的激发光谱:方法,可行性和计算机模拟研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular probes used for in vivo optical fluorescence tomography (OFT) studies in small animals are typically chosen such that their emission spectra lie in the 680-850 nm wavelength range. This is because tissue attenuation in this spectral band is relatively low, allowing optical photons even from deep sites in tissue to reach the animal surface and consequently be detected by a CCD camera. The wavelength dependence of tissue optical properties within the 680-850 nm band can be exploited for emitted light by measuring fluorescent data via multispectral approaches and incorporating the spectral dependence of these optical properties into the OFT inverse problem-that of reconstructing underlying 3D fluorescent probe distributions from optical data collected on the animal surface. However, in the aforementioned spectral band, due to only small variations in the tissue optical properties, multispectral emission data, though superior for image reconstruction compared to achromatic data, tend to be somewhat redundant. A different spectral approach for OFT is to capitalize on the larger variations in the optical properties of tissue for excitation photons than for the emission photons by using excitation at multiple wavelengths as a means of decoding source depth in tissue. The full potential of spectral approaches in OFT can be realized by a synergistic combination of these two approaches, that is, exciting the underlying fluorescent probe at multiple wavelengths and measuring emission data multispectrally. In this paper, we describe a method that incorporates both excitation and emission spectral information into the OFT inverse problem. We describe a linear algebraic formulation of the multiple wavelength illumination-multispectral detection forward model for OFT and compare it to models that use only excitation at multiple wavelengths or those that use only multispectral detection techniques. This study is carried out in a realistic inhomogeneous mouse atlas using singular value decomposition and analysis of reconstructed spatial resolution versus noise. For simplicity, quantitative results have been shown for one representative fluorescent probe (Alexa 700(R)) and effects due to tissue autofluorescence have not been taken into account. We also demonstrate the performance of our method for 3D reconstruction of tumors in a simulated mouse model of metastatic human hepatocellular carcinoma.
机译:通常选择用于小动物的体内光学荧光层析成像(OFT)研究的分子探针,以使其发射光谱位于680-850 nm波长范围内。这是因为该光谱带中的组织衰减相对较低,甚至允许光子甚至从组织中的较深位置到达动物表面并因此被CCD摄像机检测到。通过多光谱方法测量荧光数据并将这些光学特性的光谱相关性纳入OFT反问题中,可以利用680-850 nm波段内组织光学特性对发射光的波长依赖性,即重构基础3D荧光探针分布从动物表面收集的光学数据中得出。但是,在上述光谱带中,由于组织光学特性仅微小的变化,尽管多光谱发射数据比消色差数据在图像重建方面优越,但是在某种程度上是多余的。用于OFT的另一种光谱方法是利用在多个波长处的激发作为解码组织中源深度的手段,利用激发光子的组织光学特性比发射光子更大的光学特性变化。可以通过这两种方法的协同组合来实现OFT中光谱方法的全部潜力,即在多个波长下激发下面的荧光探针并多光谱地测量发射数据。在本文中,我们描述了一种将激发和发射光谱信息都纳入OFT反问题的方法。我们描述了OFT的多波长照明-多光谱检测正向模型的线性代数公式,并将其与仅使用多个波长激发或仅使用多光谱检测技术的模型进行比较。这项研究是使用奇异值分解并分析重构的空间分辨率与噪声的关系,在逼真的非均匀鼠标图集中进行的。为简单起见,已显示了一种代表性荧光探针(Alexa700®)的定量结果,并且未考虑由于组织自发荧光引起的影响。我们还展示了我们的方法在转移性人类肝细胞癌的模拟小鼠模型中对肿瘤进行3D重建的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号