首页> 外文期刊>Physics in medicine and biology. >Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations.
【24h】

Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations.

机译:将吸收剂量转换为介质,再将吸收剂量转换为水,以进行基于蒙特卡洛的光子束剂量计算。

获取原文
获取原文并翻译 | 示例
           

摘要

Current clinical experience in radiation therapy is based upon dose computations that report the absorbed dose to water, even though the patient is not made of water but of many different types of tissue. While Monte Carlo dose calculation algorithms have the potential for higher dose accuracy, they usually transport particles in and compute the absorbed dose to the patient media such as soft tissue, lung or bone. Therefore, for dose calculation algorithm comparisons, or to report dose to water or tissue contained within a bone matrix for example, a method to convert dose to the medium to dose to water is required. This conversion has been developed here by applying Bragg-Gray cavity theory. The dose ratio for 6 and 18 MV photon beams was determined by computing the average stopping power ratio for the primary electron spectrum in the transport media. For soft tissue, the difference between dose to medium and dose to water is approximately 1.0%, while for cortical bone the dose difference exceeds 10%. The variation in the dose ratio as a function of depth and position in the field indicates that for photon beams a single correction factor can be used for each particular material throughout the field for a given photon beam energy. The only exception to this would be for the clinically non-relevant dose to air. Pre-computed energy spectra for 60Co to 24 MV are used to compute the dose ratios for these photon beams and to determine an effective energy for evaluation of the dose ratio.
机译:放射治疗的当前临床经验是基于剂量计算的,该剂量计算报告了对水的吸收剂量,即使患者不是由水制成,而是由许多不同类型的组织制成。尽管蒙特卡洛剂量计算算法具有更高剂量精确度的潜力,但它们通常会将颗粒运入患者体内,并计算吸收到患者介质(例如软组织,肺或骨骼)的剂量。因此,例如,为了进行剂量计算算法比较或报告对水或骨基质中所含组织的剂量,需要一种将介质剂量转换为水剂量的方法。这种转换是在这里通过应用布拉格-灰色腔理论开发的。通过计算传输介质中一次电子光谱的平均停止功率比,可以确定6和18 MV光子束的剂量比。对于软组织,中等剂量与水剂量之间的差异约为1.0%,而皮质骨的剂量差异则超过10%。剂量比随场中深度和位置的变化表明,对于光子束,对于给定的光子束能量,可以对整个场中的每种特定材料使用单个校正因子。唯一的例外是临床上与空气无关的剂量。用于60Co至24 MV的预先计算的能谱用于计算这些光子束的剂量比,并确定用于评估剂量比的有效能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号