首页> 外文期刊>Physics in medicine and biology. >Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
【24h】

Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images

机译:扩散加权磁共振图像的拟态磁化伪影校正

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Diffusion-weighted magnetic resonance imaging is a key investigation technique in modern neuroscience. In clinical settings, diffusion-weighted imaging and its extension to diffusion tensor imaging (DTI) are usually performed applying the technique of echo-planar imaging (EPI). EPI is the commonly available ultrafast acquisition technique for single-shot acquisition with spatial encoding in a Cartesian system. A drawback of these sequences is their high sensitivity against small perturbations of the magnetic field, caused, e.g., by differences in magnetic susceptibility of soft tissue, bone and air. The resulting magnetic field inhomogeneities thus cause geometrical distortions and intensity modulations in diffusion-weighted images. This complicates the fusion with anatomical T1- or T2-weighted MR images obtained with conventional spin- or gradient-echo images and negligible distortion. In order to limit the degradation of diffusion-weighted MR data, we present here a variational approach based on a reference scan pair with reversed polarity of the phase- and frequency-encoding gradients and hence reversed distortion. The key novelty is a tailored nonlinear regularization functional to obtain smooth and diffeomorphic transformations. We incorporate the physical distortion model into a variational image registration framework and derive an accurate and fast correction algorithm. We evaluate the applicability of our approach to distorted DTI brain scans of six healthy volunteers. For all datasets, the automatic correction algorithm considerably reduced the image degradation. We show that, after correction, fusion with T1- or T2-weighted images can be obtained by a simple rigid registration. Furthermore, we demonstrate the improvement due to the novel regularization scheme. Most importantly, we show that it provides meaningful, i.e. diffeomorphic, geometric transformations, independent of the actual choice of the regularization parameters.
机译:扩散加权磁共振成像是现代神经科学中的一项重要研究技术。在临床环境中,通常使用回波平面成像(EPI)技术执行扩散加权成像及其向扩散张量成像(DTI)的扩展。 EPI是笛卡尔系统中具有空间编码的单次采集的常用超快速采集技术。这些序列的缺点是它们对例如由软组织,骨骼和空气的磁化率的差异引起的磁场的小扰动具有高灵敏度。因此,所产生的磁场不均匀性会导致扩散加权图像中的几何畸变和强度调制。这使融合与传统的自旋或梯度回波图像和可忽略的失真获得的解剖上的T1或T2加权MR图像复杂化。为了限制扩散加权MR数据的降级,我们在此提出一种基于参考扫描对的变型方法,该方法具有相反的相位和频率编码梯度极性,从而实现了反向失真。关键的新颖性是量身定制的非线性正则化函数,用于获得平滑和微分变换。我们将物理失真模型整合到变分图像配准框架中,并得出准确且快速的校正算法。我们评估了我们的方法对六名健康志愿者的畸变DTI脑部扫描的适用性。对于所有数据集,自动校正算法可大大减少图像退化。我们显示,校正后,可以通过简单的刚性配准获得与T1或T2加权图像的融合。此外,我们展示了由于新颖的正则化方案而带来的改进。最重要的是,我们证明了它提供了有意义的,即微分形的几何变换,而与正则化参数的实际选择无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号