首页> 外文期刊>Physics in medicine and biology. >A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.
【24h】

A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.

机译:区分模型约束的EM方法进行3D MRI脑组织分类和强度不均匀校正。

获取原文
获取原文并翻译 | 示例
           

摘要

We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 +/- 0.03 (WM) and 0.90 +/- 0.05 (GM) on simulated mono-spectral and 0.94 +/- 0.02 (WM) and 0.92 +/- 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 +/- 0.09 (WM) and 0.82 +/- 0.06 (GM) and 0.87 +/- 0.05 (WM) and 0.83 +/- 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.
机译:我们描述了一种用于组织分类的全自动方法,该方法是将脑灰质(GM),脑白质(WM)和脑脊髓液(CSF)进行分割,以及在脑磁共振中校正强度不均匀(INU)成像(MRI)量。它将有监督的MRI方式特定判别建模和无监督的统计期望最大化(EM)分割结合到一个集成的贝叶斯框架中。尽管参数观测模型和非参数建模的INU都是在分割本身时通过EM估计的,但马尔可夫随机场(MRF)先验模型可对分割和参数估计进行正则化。首先,根据相邻体素的成对团团势,正则化考虑了关于片段的空间和外观相关同质性的知识。其次,也是更重要的是,通过一元团势将有关脑组织全局空间分布的患者特定知识纳入分割过程。它们基于由概率提升树(PBT)提供的用于对图像体素进行分类的强大判别模型。它依赖于周围环境和基于概率解剖图谱的基于对齐的特征。所考虑的上下文由INU灵敏度降低的类似3D Haar的特征进行编码。对准是通过仿射配准算法自动执行的,该算法使互相关最小。两种类型的特征都不会立即使用MRI模态提供的观察到的强度,而是依赖于对MRI伪影不那么敏感的经过特殊变换的特征。对标准体模扫描和标准真实世界数据进行的详细定量评估显示了该方法的准确性和鲁棒性。与其他同类计算方法相比,它们还展示了相对优越性:我们的方法在模拟时达到了0.93 +/- 0.03(WM)和0.90 +/- 0.05(GM)的平均Dice系数在BrainWeb储存库中模拟的多光谱数据上,单光谱和0.94 +/- 0.02(WM)和0.92 +/- 0.04(GM)。包含两个真实数据集的得分分别为0.81 +/- 0.09(WM)和0.82 +/- 0.06(GM)和0.87 +/- 0.05(WM)和0.83 +/- 0.12(GM)分别由Internet Brain Segmentation Repository提供,共有20卷和18卷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号