首页> 外文期刊>Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences >Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration (Review)
【24h】

Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration (Review)

机译:表征生物活性溶胶-凝胶硅酸盐玻璃和用于骨骼再生的混合支架的层次结构(综述)

获取原文
获取原文并翻译 | 示例
           

摘要

Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included.
机译:骨骼是仅次于血液的第二广泛移植的组织。需要合成替代品,这些替代品可以通过充当骨骼生长的活性临时模板来减少移植需求并再生骨骼。生物活性玻璃是最有前途的骨替代/再生材料之一,因为它们结合到现有的骨骼上,可降解,并通过其溶解产物对细胞的作用刺激新的骨骼生长。可以对源自溶胶凝胶的生物活性玻璃进行发泡,以产生适合组织向内生长的互连大孔,特别是细胞迁移,血管形成和细胞渗透。支架满足理想的合成骨移植物的许多标准,但由于它们易碎,因此不适用于所有骨缺损部位。在不丧失其其他有益性能的情况下,改善支架韧性的一种策略是合成无机/有机杂化物。这些杂化体将聚合物引入到溶胶-凝胶工艺中,从而使有机和无机组分在分子水平上相互作用,从而提供对机械性能和降解速率的控制。但是,需要充分了解玻璃和混合支架的每个特征或特性如何影响细胞反应,以优化材料并确保长期成功和临床产品。这篇综述着重于已开发出的用于表征溶胶-凝胶玻璃和杂化物的分层结构的技术,这些技术从原子级无定形网络到杂化物和纳米孔隙中各组分之间的共价键合,到定量开放的支架大孔网络。还包括用于材料的降解和生物活性机制的非破坏性原位监测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号