首页> 外文期刊>Philosophical Transactions of the Royal Society of London, Series B. Biological Sciences >Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers
【24h】

Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers

机译:在哺乳动物生命周期中重新编程DNA甲基化:建立和打破表观遗传障碍

获取原文
获取原文并翻译 | 示例
           

摘要

In mammalian development, epigenetic modifications, including DNaI methylation patterns)vplay a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant; with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote; and secondly in primordial germ cells (PGCs), which dre the direct progenitors of sperm or oocyte. In each-reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demetHylation have been implicated in rep in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGGs and, the szygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of poten-tial mechanisms can bennvestigated Kin vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic repro-gramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine.
机译:在哺乳动物发育中,表观遗传修饰(包括DNaI甲基化模式)在定义细胞命运中起着至关重要的作用,但也代表了限制发育潜力的表观遗传障碍。在生命周期的两个阶段,随之而来的是在全球范围内对DNA甲基化标记进行重新编程。恢复发展潜力。随后根据对独特细胞命运的承诺重新建立了DNA甲基化模式。 DNA甲基化的这种重新编程首先发生在受精卵受精后;其次是原始生殖细胞(PGC),它们是精子或卵母细胞的直接祖先。在每个重新编程窗口中,一套独特的机制可调节DNA甲基化的擦除和重建。最近的进展已发现,TET3羟化酶和被动脱甲基作用,以及碱基切除修复(BER)和延伸剂复合物在从合子清除甲基化中起着作用。 AGC,BER和被动脱甲基的脱氨作用与PGC中的rep有关,但是对整个过程的了解仍然很少。在这篇综述中,我们讨论了PGG中DNA甲基化重编程的动力学,以及合子,涉及的机制以及这些事件的生物学意义。我们对这种自然表观遗传重编程的了解的进展开始有助于增强实验重编程,其中潜在机制的作用可以在近亲体内进行研究。相反,对体外重编程技术的见识可能有助于我们了解种系中的表观遗传重编程,并为再生医学疗法的重编程提供重要线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号