...
首页> 外文期刊>Pfluegers Archiv: European Journal of Physiology >Differential effects of Zn2+ on activation, deactivation, and inactivation kinetics in neuronal voltage-gated Na+ channels.
【24h】

Differential effects of Zn2+ on activation, deactivation, and inactivation kinetics in neuronal voltage-gated Na+ channels.

机译:Zn2 +对神经元电压门控Na +通道中激活,失活和失活动力学的不同影响。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Whole-cell, patch-clamp recordings were carried out in acutely dissociated neurons from entorhinal cortex (EC) layer II to study the effects of Zn(2+) on Na(+) current kinetics and voltage dependence. In the presence of 200 muM extracellular Cd(2+) to abolish voltage-dependent Ca(2+) currents, and 100 mM extracellular Na(+), 1 mM Zn(2+) inhibited the transient Na(+) current, I (NaT), only to a modest degree (~17% on average). A more pronounced inhibition (~36%) was induced by Zn(2+) when extracellular Na(+) was lowered to 40 mM. Zn(2+) also proved to modify I (NaT) voltage-dependent and kinetic properties in multiple ways. Zn(2+) (1 mM) shifted the voltage dependence of I (NaT) activation and that of I (NaT) onset speed in the positive direction by ~5 mV. The voltage dependence of I (NaT) steady-state inactivation and that of I (NaT) inactivation kinetics were markedly less affected by Zn(2+). By contrast, I (NaT) deactivation speed was prominently accelerated, and its voltage dependence was shifted by a significantly greater amount (~8 mV on average) than that of I (NaT) activation. In addition, the kinetics of I (NaT) recovery from inactivation were significantly slowed by Zn(2+). Zn(2+) inhibition of I (NaT) showed no signs of voltage dependence over the explored membrane-voltage window, indicating that the above effects cannot be explained by voltage dependence of Zn(2+)-induced channel-pore block. These findings suggest that the multiple, voltage-dependent state transitions that the Na(+) channel undergoes through its activation path are differentially sensitive to the gating-modifying effects of Zn(2+), thus resulting in differential modifications of the macroscopic current's activation, inactivation, and deactivation. Computer modeling provided support to this hypothesis.
机译:全细胞膜片钳记录进行了从内嗅皮质(EC)层II的急性离解神经元,以研究Zn(2+)对Na(+)电流动力学和电压依赖性的影响。在存在200μM胞外Cd(2+)来消除电压依赖性Ca(2+)电流和100 mM胞外Na(+)的情况下,1 mM Zn(2+)抑制了瞬时Na(+)电流,I (NaT),仅适度(平均约17%)。当细胞外Na(+)降低至40 mM时,Zn(2+)引起更明显的抑制作用(〜36%)。 Zn(2+)还被证明可以多种方式修饰I(NaT)电压依赖性和动力学性质。 Zn(2+)(1 mM)将I(NaT)激活的电压依赖性和I(NaT)起始速度的电压依赖性沿正方向偏移了〜5 mV。 I(NaT)稳态失活和I(NaT)失活动力学的电压依赖性受Zn(2+)影响较小。相比之下,I(NaT)的失活速度明显加快,并且其电压依赖性比I(NaT)的活化程度显着增加(平均约8 mV)。此外,I(NaT)从失活中恢复的动力学被Zn(2+)大大减慢了。 Zn(2+)对I(NaT)的抑制在所探索的膜电压窗口上没有显示出电压依赖性的迹象,表明上述效应无法通过Zn(2+)诱导的通道孔阻滞的电压依赖性来解释。这些发现表明,Na(+)通道通过其激活路径经历的多个电压依赖性状态转变对Zn(2+)的门控修饰效应具有不同的敏感性,因此导致宏观电流激活的不同修饰,停用和停用。计算机建模为该假设提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号