...
首页> 外文期刊>Petroleum Geoscience >Geomechanical modelling of CO2 geological storage with the use of site specific rock mechanics laboratory data
【24h】

Geomechanical modelling of CO2 geological storage with the use of site specific rock mechanics laboratory data

机译:利用特定地点的岩石力学实验室数据对CO2地质封存进行地质力学建模

获取原文
获取原文并翻译 | 示例

摘要

Many diverse challenges - political, economic, legal and technical - face the continued development and deployment of geological storage of anthropogenic CO2. Among the technical challenges will be the satisfactory proof of storage site security and efficacy. Evidence from many past geotechni-cal projects has shown the investigations and analyses that are required to demonstrate safe and satisfactory performance will be site specific. This will hold for the geomechanical assessment of saline aquifer storage site integrity where, compared to depleted hydrocarbon fields, there will be no previous pressure response history or rock property characterization data available. The work presented was carried out as part of a project investigating the improvement in levels of confidence in all aspects of saline aquifer site selection and characterization that could be expected with increasing data availability and in-depth analysis. Attention focused on the geomechanical modelling and the rock mechanics data used to populate models of two storage sites in geological settings analogous to those where CO2 storage might be considered. Coupled geomechanical models were developed from reservoir simulation models initially incorporating generic rock mechanical properties and then laboratory-derived site-specific properties. The models were run in various configurations to investigate the effect of changing the rock mechanical properties on the geomechanical response of the storage systems. Modelling results showed that the pressure response at one site due to low injectivity caused significant potential for fault reactivation. Increasing the number of injection wells, thereby reducing the individual rates needed to deliver the target capacity, reduced the injection pressures and ameliorated, but did not eliminate, this adverse response.
机译:政治,经济,法律和技术方面的许多挑战都面临着人为二氧化碳地质封存的持续发展和部署。在技​​术挑战中将是令人满意的存储站点安全性和有效性的证明。过去许多土力工程项目的证据表明,为证明安全和令人满意的性能而进行的调查和分析将针对特定地点。这将适用于盐水含水层存储场地完整性的地质力学评估,与贫化油气田相比,这里将没有以前的压力响应历史或岩石性质表征数据。提出的工作是作为项目的一部分进行的,该项目研究了对盐层含水层选址和特征描述各个方面的置信水平的提高,随着数据可用性和深入分析的增加,这些方面有望实现。注意力集中在地质力学模型和岩石力学数据上,这些数据用于在地质环境中类似于可能考虑二氧化碳封存的情况下填充两个封存地点的模型。耦合地质力学模型是从储层模拟模型中开发出来的,该模型最初结合了一般的岩石力学特性,然后结合了实验室衍生的现场特定特性。该模型以各种配置运行,以研究改变岩石力学特性对存储系统的地质力学响应的影响。建模结果表明,由于低注入性,一个位置的压力响应导致断层再激活的巨大潜力。增加注入井的数量,从而降低交付目标产能所需的各个速率,降低注入压力,并改善了(但并未消除)这种不良反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号