首页> 外文期刊>Particulate Science and Technology: An International Journal >Hydrodynamic Study of Gas-Solid Internally Circulating Fluidized Bed Using Multiphase CFD Model
【24h】

Hydrodynamic Study of Gas-Solid Internally Circulating Fluidized Bed Using Multiphase CFD Model

机译:基于多相CFD模型的气固内循环流化床水动力研究

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, hydrodynamic study of gas and solid flow in an internally circulating fluidized bed (ICFB) was carried out using the CFD multiphase model. Two- (2D) and three-dimensional (3D) computational meshes were used to represent physical ICFB geometries of 0.186-m and 0.3-m diameter columns. The model approach uses the two-fluid Eulerian model with kinetic theory of granular flow options to account particle-particle and particle-wall interactions. The model also uses various drag laws to account the gas-solid phase interactions. The 2D simulation results by various drag laws show that the Arastoopour and Gibilaro drag models predict the fluidization dynamics in terms of flow patterns, void fractions, and axial velocity fields in close agreement with the Ahuja et al. (2008) experimental data. Three dimensional simulations were also carried out for a large-scale ICFB. The effects of superficial gas velocity and the presence of draft tube on solid holdup distribution, solid recirculation pattern, and gas bypassing dynamics for the 3D ICFB were investigated extensively. The mechanism governing the solid circulation and the pressure losses in an ICFB has been explained based on gas and solid dynamics obtained from these simulations. Predicted total granular temperature distributions in 3D ICFB draft tube and the annular zone are qualitatively in agreement with the experimental data. The total granular temperature tends to increase with the increase in solids concentration in the dilute region (E<0.1) and decrease with an increase of solids concentration in the dense region (epsilon>0.1).
机译:在当前工作中,使用CFD多相模型对内部循环流化床(ICFB)中的气体和固体流进行了流体动力学研究。使用二维(2D)和三维(3D)计算网格来表示直径为0.186-m和0.3-m的物理ICFB几何形状。该模型方法使用具有颗粒流动选项动力学理论的双流体欧拉模型来解释颗粒-颗粒和颗粒-壁之间的相互作用。该模型还使用各种阻力定律来解释气固相相互作用。各种阻力定律的二维模拟结果表明,Arastoopour和Gibilaro阻力模型可以根据流型,空隙率和轴向速度场来预测流化动力学,这与Ahuja等人非常一致。 (2008年)实验数据。还针对大型ICFB进行了三维模拟。广泛研究了表观气体速度和引流管的存在对3D ICFB的固体滞留量分布,固体再循环模式和气体旁路动力学的影响。基于从这些模拟中获得的气体和固体动力学,已经解释了控制ICFB中的固体循环和压力损失的机理。定性地预测了3D ICFB导流管和环形区域中的总颗粒温度分布,与实验数据相符。总颗粒温度趋于随稀薄区域中固体浓度的增加而升高(E <0.1),而随着致密区域中固体浓度的增加而降低(ε> 0.1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号