...
首页> 外文期刊>Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems >Ultrahigh-Density Plasmonic-Nanoparticle-Sensitized Semiconductor Photocatalysts Profit from Cooperative Light Harvesting and Charge Separation Processes: Experiments, Simulations, and Multifunctional Plasmonics
【24h】

Ultrahigh-Density Plasmonic-Nanoparticle-Sensitized Semiconductor Photocatalysts Profit from Cooperative Light Harvesting and Charge Separation Processes: Experiments, Simulations, and Multifunctional Plasmonics

机译:超高密度等离子-纳米粒子敏化的半导体光催化剂得益于合作的光收集和电荷分离过程:实验,模拟和多功能等离激元

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Here, a controlled synthesis of remarkable 3D photocatalysts is presented that is composed of ultrahigh-density unaggregated plasmonic Au nanoparticles (AuNPs) chemically bound to vertically aligned ZnO nanorod arrays (ZNA) through bifunctional molecular linkers. Experimental probes and electromagnetic simulations of electron transfer and localized plasmonic coupling processes are exploited to gain insight into the underlying light-irradiation-induced interactions in the 3D ZNA-AuNPs photocatalysts. Highly dense AuNPs on ZNA surfaces act as sinks for the storage of UV-generated electrons, which promote the separation of charge carriers and create numerous photocatalytic reaction centers. Furthermore, 3D finite-difference time domain simulation indicates that significant visible light confinement and enhancement around the ZNA-AuNPs interfacial plasmon "hot spots" contribute to efficient conversion of light energy to electron-hole pairs. Significantly, in comparison with the bare ZNA, the 10-nm-sized AuNPs-decorated ZNA exhibits 10.6-fold enhanced photoreaction rate in the entire UV-vis region. Moreover, various novel hybrid structures based on the plasmonic AuNPs and diverse nanostructures (films, powdered nanorods, mesoporous, and nanotubes) or functional materials (multiferroic BiFeO3, CuInGaSe2 absorber layers, and photoactive TiO2) are successfully constructed using the present synthesis methodology. It may stimulate the progress in materials science toward the synthesis of multifunctional plasmonic heterostructures or devices.
机译:在这里,提出了一种卓越的3D光催化剂的受控合成方法,该方法由通过双功能分子接头化学键合到垂直排列的ZnO纳米棒阵列(ZNA)的超高密度非聚集型等离子Au纳米颗粒(AuNPs)组成。利用电子转移和局域等离子体耦合过程的实验探针和电磁模拟来深入了解3D ZNA-AuNPs光催化剂中潜在的光辐照诱导的相互作用。 ZNA表面上的高度致密的AuNP用作吸收UV产生的电子的池,从而促进电荷载流子的分离并创建许多光催化反应中心。此外,3D有限差分时域仿真表明,ZNA-AuNPs界面等离激元“热点”周围明显的可见光限制和增强有助于将光能有效转换为电子-空穴对。值得注意的是,与裸露的ZNA相比,装饰有10 nm尺寸的AuNPs的ZNA在整个UV-vis区域显示出10.6倍的光反应速率。此外,使用本发明的合成方法成功地构建了基于等离子体AuNP和各种纳米结构(膜,粉状纳米棒,中孔和纳米管)或功能材料(多铁性BiFeO3,CuInGaSe2吸收层和光敏性TiO2)的各种新型杂化结构。它可能会刺激材料科学向多功能等离激元异质结构或器件的合成发展。

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号