...
首页> 外文期刊>Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems >Towards Excellent Anodes for Li-Ion Batteries with High Capacity and Super Long Lifespan: Confining Ultrasmall Sn Particles into N-Rich Graphene-Based Nanosheets
【24h】

Towards Excellent Anodes for Li-Ion Batteries with High Capacity and Super Long Lifespan: Confining Ultrasmall Sn Particles into N-Rich Graphene-Based Nanosheets

机译:面向具有高容量和超长寿命的锂离子电池的出色阳极:将超小锡颗粒限制在富含N的石墨烯基纳米片中

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sn is regarded as a promising anode material for Li-ion batteries due to high capacity and cost effectiveness. Hitherto large-scale fabrication of Sn-based materials while achieving both high capacity and long cycle life remains challenging, but it is highly required for its realization in practical applications. Furthermore, low melting point always casts shadow over the morphology-controllable preparation, and leads to multistep or high-cost processes. Here, a facile and scalable method is devised for a 2D hybrid structure of Sn@ graphene-based nanosheets incorporating of optimized nitrogen species (approximate to 13 wt%). Distinct from conventional Sn-C composites, the fairly N-rich carbon nanosheets liberate limited potential of low N doping, induce massive extra Li-storage sites, and encourage a high capacity significantly. In addition, these abundantly anchored heteroatoms also promote the homogeneous dispersion and robust confinement of ultrasmall Sn nanoparticles into the flexible graphene-based nanosheets. This elastic encapsulation towards Sn nanoparticles admirably maintains structural integrity through effective remission of volume expansion, demonstrating a super long-term cyclic stability for 1000 cycles. This structural and componential engineering offers a signifi cant implication for rational design of materials in extended areas of energy conversion and storage.
机译:由于高容量和成本效益,Sn被认为是锂离子电池有希望的负极材料。迄今为止,在实现高容量和长循环寿命的同时大规模制造Sn基材料仍然具有挑战性,但是在实际应用中实现它是高度需要的。此外,低熔点总是在形态可控的制剂上蒙上阴影,并导致多步骤或高成本的过程。在此,为掺入优化氮物种(约13 wt%)的Sn @石墨烯基纳米片的二维混合结构设计了一种简便且可扩展的方法。与常规的Sn-C复合材料不同,相当富氮的碳纳米片释放出有限的低氮掺杂潜能,诱发大量额外的锂存储位,并显着提高了高容量。此外,这些大量锚定的杂原子还促进了超小Sn纳米颗粒向柔性石墨烯基纳米片材的均匀分散和稳固封闭。通过有效缓解体积膨胀,这种对Sn纳米粒子的弹性包封可令人钦佩地保持结构完整性,证明了1000个循环的超长期循环稳定性。这种结构和部件工程对能量转换和存储扩展区域中的材料进行合理设计具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号