首页> 外文期刊>Celestial Mechanics and Dynamical Astronomy: An international journal of space dynamics >Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model
【24h】

Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: Mathematical model

机译:具有两层流体核心的可变形地球自转的数值理论。第1部分:数学模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincares method of modeling the dynamical effects of the fluid core, and Sasao's approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth's rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core ( including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags delta, delta(c), delta(i) responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984 - 2005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals d theta, sin theta d phi for the angles of nutation theta and precession phi are 0.136 mas and 0.129 mas, respectively. They are significantly less than the corresponding values 0.172 and 0.165 mas for IAU 2000 theory. The WRMS error of the UT residuals is 18 ms.
机译:建立了具有两层流体核心的可变形地球自转的改进微分方程。这些方程式描述了岁差运动和轴向旋转(即世界时UT的变化)。对于两层流体岩心,推广了用Poincares方法模拟流体岩心动力效应的方法和Sasao的方法,根据动力学Love数计算岩心与地幔之间的潮汐相互作用。考虑了当前采用的地球自转理论中忽略的一些重要扰动。特别是这些是由于地球及其核心的潮汐变形(包括月潮与太阳和太阳潮与太阳和海浪的耗散交叉相互作用的影响)而引起的地球内部密度重新分布所引起的扰动转矩。月亮)。在采用的Nutation IAU 2000中无法考虑这种扰动,其中唯一考虑到的潮汐效应是地幔和岩心惯性矩的潮汐变化。这些方程式明确取决于三个潮汐时滞,分别是整个地球以及其外部和内部核心的能量消散的增量,增量(c),增量(i)。除了潮汐影响外,微分方程还考虑了地幔与外部核之间边界附近的非潮汐相互作用。这些方程以适合于数值积分的简单近似形式表示。进行了这种积分,随后将构造的数值理论与基于VLBI的天极位置和UT在1984年至2005年之间的变化进行拟合。拟合的详细信息在本工作的第二部分中作为单独的内容进行了介绍。论文(Krasinsky和Vasilyev,2006年),以下简称为论文2。对于章动角theta和进动phi角,残差d theta,sin theta d phi的加权均方根(WRMS)误差为0.136 mas和0.129 mas,分别。它们远小于IAU 2000理论的相应值0.172和0.165 mas。 UT残差的WRMS误差为18 ms。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号