...
首页> 外文期刊>Sustainable Humanosphere >Bioethanol production from woody biomass using microwave technology
【24h】

Bioethanol production from woody biomass using microwave technology

机译:利用微波技术从木质生物质生产生物乙醇

获取原文
获取原文并翻译 | 示例

摘要

There is growing demand to develop new, highly efficient technology to produce bioethanol and chemicals from woody biomass. For enzymatic conversion of lignocellulosics, pretreatments to expose cell wallpolysaccharides is necessary. Efficient conversion of the enzymatic hydrolyzates by ethanologenic microbes are also the key factor for bioethanol production. In our NEDO project (R&D member: RISH, Kyoto Univ., Prof. Hideshi Yanase, Fac. Eng. Tottori Univ., Japan Chemical Engineering & Machinery Co. Ltd., and Toyota Motor Corporation), we have applied microwave-assisted solvolysis to the pretreatment. We have developed microwave solvolysis system with various catalysts and new continuous microwave reactors by applying 3D electromagnetic simulation technique. Through cell-surface engineering based on genome DNA analysis, novel, high-performance ethanologenic bacteria, Zymobacter palmae and Zymomonas mobilis, which efficiently convert hexoses and pentosesto bioethanol,secrete beta-glucosidase, and display cellulase on the surface of the cells, are being bred in Tottori Univ. A high-performance fermentation process using the ethanologenic bacteria is being developed to produce bioethanol from fast growing wood. A benchscale plant for bioethanol production using the pretreatment system and genetically engineered bacteria was build in 2010 (Fig. 1), and bioethanol was produced in a 300 L-scale jar fermentor. Production of value-added aromatic chemicals from lignin is indispensable to replace oil refinery to biorefinery. Therefore, we have been studying conversion of lignin to functional polymers and low molecular mass aromatics by microwave reactions. We also investigate detailed structures of pretreated lignocellulosics and their components by ultra-high sensitivity NMR, ultra-high resolution mass spectroscopy and fluorescent-labeled carbohydrate binding modules (CBM), aiming at maximizing conversion efficiency with minimum enzyme dosage and energy.
机译:对开发新的高效技术以利用木质生物质生产生物乙醇和化学品的需求不断增长。对于木质纤维素的酶促转化,暴露细胞壁多糖的预处理是必需的。产乙醇微生物对酶解产物的有效转化也是生物乙醇生产的关键因素。在我们的NEDO项目中(研发成员:RISH,京都大学,柳濑英史教授,鸟取大学工程学系,日本化学工程机械有限公司和丰田汽车公司),我们已经应用了微波辅助溶剂分解法进行预处理。通过应用3D电磁模拟技术,我们开发了具有多种催化剂的微波溶剂分解系统和新型连续微波反应器。通过基于基因组DNA分析的细胞表面工程,新型高效的产乙醇细菌,棕榈杆菌和运动发酵单胞菌(Zymomonas mobilis)正在高效地转化己糖和戊糖生物乙醇,分泌的β-葡萄糖苷酶,并在细胞表面展示纤维素酶。在鸟取大学繁殖。正在开发一种使用产乙醇细菌的高效发酵工艺,以从快速生长的木材中生产生物乙醇。在2010年建立了使用预处理系统和转基因细菌生产生物乙醇的台式设备(图1),并在300 L规模的罐式发酵罐中生产了生物乙醇。用木质素生产高附加值的芳香族化学品对于将炼油厂替代为生物炼油厂是必不可少的。因此,我们一直在研究通过微波反应将木质素转化为功能性聚合物和低分子量芳族化合物。我们还通过超高灵敏度NMR,超高分辨率质谱和荧光标记的碳水化合物结合模块(CBM),对经过预处理的木质纤维素及其成分的详细结构进行了研究,旨在以最小的酶剂量和能量最大化转化效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号