首页> 外文期刊>Synlett >'Pseudo-halide' Derivatives of Grubbs- and Schrock-Type Catalysts for Olefin Metathesis
【24h】

'Pseudo-halide' Derivatives of Grubbs- and Schrock-Type Catalysts for Olefin Metathesis

机译:用于烯烃复分解的Grubbs型和Schrock型催化剂的“拟卤化物”衍生物

获取原文
获取原文并翻译 | 示例
           

摘要

Metathesis has persisted through the years as a formidable synthetic approach to various unsaturated organic molecules and macromolecules. The 21st century developments in olefin metathesis continue to feature more efficient and selective, well-defined metathesis catalysts. Due to the easily regulated steric and electronic properties of 'pseudo-halide' derivatives, their study has launched a new milestone in ruthenium- and molybdenum-based catalysis. Synthesizing 'pseudo-halide' derivatives often entails replacing halide ligands with easily modified carboxylates, perfluorocarboxylates, phenoxides, isocyanates, isothiocyanates, pyridines, nitrates, and trifluoromethanesulfonates. This account elucidates the recent advances in 'pseudo-halide'-containing olefin metathesis, including synthetic approaches to obtain new catalysts and op-timization of the ligand sphere. Several innovations in Ru- and Moalkylidenes that concern initiation efficiency, reactivity, stereoselectivity, supported catalysis, cyclopolymerization, and copolymerization are described. Refinement of the anionic 'pseudo-halide' ligands has enabled the perfection of Ru- and Mo-based metathesis catalysts in both reactivity and selectivity. These advances have led to stereoselectivity in polymerizations, improved copolymerization affinity, and the regioselective cyclopolymerization of 1,6-heptadiynes to result in conjugated polymers solely based on five-membered repeat units. 1Introduction 2Catalyst Synthesis 2.1Modified Ru-Alkylidene-Based Metathesis Catalysts 2.1.1 Halides, Alkoxides, and Aryloxides 2.1.2 Bidentate or Monodentate Carboxylates 2.1.3 Nitrates and Trifluoromethanesulfonates 2.1.4 Isocyanates and Isothiocyanates 2.2Modified Mo-Alkylidene-Based Metathesis Catalysts 2.2.1 Bidentate or Monodentate Carboxylates 2.3Supported Catalysts 3Characterization and Structural Effects 3.1General Procedures 3.2X-ray Structures 3.3~1H and~(13)C NMR Shifts of the Alkylidene Resonances 4Catalysis in Organic Synthesis 4.1Ring-Closing Metathesis (RCM) 4.2Other Metathesis Reactions 5Catalysis in Polymerization 5.1Ring-Opening Metathesis Polymerization (ROMP) 5.1.1 2-Norbornene (NBE) 5.1.2 Cyclooctene (COE) 5.1.3 cis-1,5-Cyclooctadiene (COD) 5.2Cyclopolymerization of 1,6-Heptadiynes 5.2.1 Diethyl Dipropargylmalonate (DEDPM) 5.2.2 Other 1,6-Heptadiynes 5.3Copolymerization 5.3.1 Copolymers via Ring-Opening Metathesis Polymerization (ROMP) 5.3.2 Copolymers of 1,6-Heptadiynes with Acetylene 6Summary and Outlook
机译:复分解作为对各种不饱和有机分子和大分子的强大合成方法已持续了许多年。烯烃复分解的21世纪发展继续以更有效和选择性更好,定义明确的复分解催化剂为特征。由于“伪卤化物”衍生物的空间和电子特性易于调节,因此他们的研究为钌和钼基催化开创了一个新的里程碑。合成“拟卤化物”衍生物通常需要用易于修饰的羧酸盐,全氟羧酸盐,酚盐,异氰酸酯,异硫氰酸盐,吡啶,硝酸盐和三氟甲磺酸盐代替卤化物配体。该描述阐明了含“假卤化物”的烯烃复分解的最新进展,包括合成方法以获得新的催化剂和优化配体球。描述了Ru-和Mo-亚烷基中涉及引发效率,反应性,立体选择性,负载型催化,环聚合和共聚的几种创新。阴离子“拟卤化物”配体的精制使得能够在反应性和选择性方面完善基于Ru和Mo的复分解催化剂。这些进展已导致聚合中的立体选择性,改进的共聚亲和力和1,6-庚二炔的区域选择性环聚合,从而仅基于五元重复单元生成共轭聚合物。 1简介2催化剂合成2.1改性的基于Ru-亚烷基的复分解催化剂2.1.1卤化物,烷氧化物和芳基氧化物2.1.2齿状或单齿的羧酸盐2.1.3硝酸盐和三氟甲磺酸盐2.1.4异氰酸酯和异硫氰酸酯2.2改性的基于Mo-炔基的复分解反应.1双齿或单齿羧酸盐2.3负载催化剂3特征和结构效果3.1一般步骤3.2亚烷基共振的X射线结构3.3〜1H和〜(13)C NMR位移4有机合成中的催化作用4.1闭环易位(RCM)4.2其他复分解反应5聚合中的催化5.1开环复分解聚合(ROMP)5.1.1 2-降冰片烯(NBE)5.1.2环辛烯(COE)5.1.3顺1,5-环辛二烯(COD)5.2 1,6-的环聚合庚二炔5.2.1二炔丙基丙二酸二乙酯(DEDPM)5.2.2其他1,6-庚二炔5.3共聚5.3.1通过开环复分解聚合(ROMP)的共聚物5.3.2 1,6-庚二烯的共聚物乙炔乙二炔的概述和展望

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号