...
首页> 外文期刊>Systematic Biology >Computational Performance and Statistical Accuracy of *BEAST and Comparisons with Other Methods
【24h】

Computational Performance and Statistical Accuracy of *BEAST and Comparisons with Other Methods

机译:* BEAST的计算性能和统计精度以及与其他方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Under the multispecies coalescent model of molecular evolution, gene trees have independent evolutionary histories within a shared species tree. In comparison, supermatrix concatenation methods assume that gene trees share a single common genealogical history, thereby equating gene coalescence with species divergence. The multispecies coalescent is supported by previous studies which found that its predicted distributions fit empirical data, and that concatenation is not a consistent estimator of the species tree. *BEAST, a fully Bayesian implementation of the multispecies coalescent, is popular but computationally intensive, so the increasing size of phylogenetic data sets is both a computational challenge and an opportunity for better systematics. Using simulation studies, we characterize the scaling behavior of *BEAST, and enable quantitative prediction of the impact increasing the number of loci has on both computational performance and statistical accuracy. Follow-up simulations over awide range of parameters show that the statistical performance of *BEAST relative to concatenation improves both as branch length is reduced and as the number of loci is increased. Finally, using simulations based on estimated parameters from two phylogenomic data sets, we compare the performance of a range of species tree and concatenation methods to show that using *BEAST with tens of loci can be preferable to using concatenation with thousands of loci. Our results provide insight into the practicalities of Bayesian species tree estimation, the number of loci required to obtain a given level of accuracy and the situations in which supermatrix or summary methods will be outperformed by the fully Bayesian multispecies coalescent.
机译:在分子进化的多物种合并模型下,基因树在共享物种树中具有独立的进化历史。相比之下,超级矩阵级联方法假设基因树共享一个共同的族谱历史,从而将基因合并等同于物种差异。多物种合并得到先前研究的支持,该研究发现其预测分布符合经验数据,并且级联并不是物种树的一致估计。 * BEAST是多物种合并的完全贝叶斯实现,很受欢迎,但计算量很大,因此,系统发育数据集规模的增加既是计算上的挑战,也是更好的系统的机会。使用模拟研究,我们可以表征* BEAST的缩放行为,并能够定量预测增加基因座数量对计算性能和统计准确性的影响。在较大范围的参数上进行的后续模拟显示,* BEAST相对于级联的统计性能在分支长度减小和基因座数量增加的同时均得到改善。最后,使用基于来自两个植物遗传学数据集的估计参数的模拟,我们比较了一系列物种树和串联方法的性能,结果表明,将* BEAST与数十个基因座一起使用可能比与数千个基因座一起使用更可取。我们的结果提供了对贝叶斯树种估计的实用性,获得给定精度水平所需的基因座数量以及在完全贝叶斯多物种合并后超级矩阵或汇总方法无法实现的情况的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号