...
首页> 外文期刊>Synapse >Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: A simulation study for [~(18)F]FDOPA PET by a model with detailed dopamine pathway
【24h】

Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: A simulation study for [~(18)F]FDOPA PET by a model with detailed dopamine pathway

机译:动力学宏参数对多巴胺合成,储存和代谢变化的敏感性:[〜(18)F] FDOPA PET通过具有详细多巴胺途径的模型的模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative interpretation of brain [~(18)F]FDOPA PET data has been made possible by several kinetic modeling approaches, which are based on different assumptions about complex [~(18)F]FDOPA metabolic pathways in brain tissue. Simple kinetic macro parameters are often utilized to quantitatively evaluate metabolic and physiological processes of interest, which may include DDC activity, vesicular storage, and catabolism from 18F-labeled dopamine to DOPAC and HVA. A macro parameter most sensitive to the changes of these processes would be potentially beneficial to identify impaired processes in a neurodegenerative disorder such as Parkinson's disease. The purpose of this study is a systematic comparison of several [~(18)F]FDOPA macro parameters in terms of sensitivities to process-specific changes in simulated time-activity curve (TAC) data of [~(18)F]FDOPA PET. We introduced a multiple-compartment kinetic model to simulate PET TACs with physiological changes in the dopamine pathway. TACs in the alteration of dopamine synthesis, storage, and metabolism were simulated with a plasma input function obtained by a non-human primate [~(18)F]FDOPA PET study. Kinetic macro parameters were calculated using three conventional linear approaches (Gjedde-Patlak, Logan, and Kumakura methods). For simulated changes in dopamine storage and metabolism, the slow clearance rate (k_(loss)) as calculated by the Kumakura method showed the highest sensitivity to these changes. Although k_(loss) performed well at typical ROI noise levels, there was large bias at high noise level. In contrast, for simulated changes in DDC activity it was found that K_i and V_T, estimated by Gjedde-Patlak and Logan method respectively, have better performance than kloss.
机译:通过几种动力学建模方法,可以对大脑[〜(18)F] FDOPA PET数据进行定量解释,这些方法基于对脑组织中复杂的[〜(18)F] FDOPA代谢途径的不同假设。简单的动力学宏观参数通常用于定量评估感兴趣的代谢和生理过程,其中可能包括DDC活性,囊泡贮藏以及从18F标记的多巴胺到DOPAC和HVA的分解代谢。对这些过程的变化最敏感的宏参数可能对识别神经退行性疾病(如帕金森氏病)中受损的过程具有潜在的益处。本研究的目的是就对[〜(18)F] FDOPA PET的模拟时间-活性曲线(TAC)数据的过程特定变化的敏感性,对多个[〜(18)F] FDOPA宏参数进行系统比较。 。我们引入了多隔室动力学模型来模拟具有多巴胺途径生理变化的PET TAC。使用非人类灵长类动物[〜(18)F] FDOPA PET研究获得的血浆输入功能,模拟了多巴胺合成,储存和代谢改变中的TAC。使用三种常规线性方法(Gjedde-Patlak,Logan和Kumakura方法)计算动力学宏参数。对于模拟的多巴胺存储和代谢变化,通过仓仓方法计算出的缓慢清除率(k_(损失))显示出对这些变化的最高敏感性。尽管k_(loss)在典型的ROI噪声水平下表现良好,但在高噪声水平下存在较大的偏差。相反,对于DDC活动的模拟变化,发现分别由Gjedde-Patlak和Logan方法估计的K_i和V_T具有比kloss更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号