...
首页> 外文期刊>Chemical Society Reviews >Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities
【24h】

Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities

机译:模拟无机-生物有机界面以发现新材料:洞察力,与实验的比较,挑战和机遇

获取原文
获取原文并翻译 | 示例

摘要

Natural and man-made materials often rely on functional interfaces between inorganic and organic compounds. Examples include skeletal tissues and biominerals, drug delivery systems, catalysts, sensors, separation media, energy conversion devices, and polymer nanocomposites. Current laboratory techniques are limited to monitor and manipulate assembly on the 1 to 100 nm scale, time-consuming, and costly. Computational methods have become increasingly reliable to understand materials assembly and performance. This review explores the merit of simulations in comparison to experiment at the 1 to 100 nm scale, including connections to smaller length scales of quantum mechanics and larger length scales of coarse-grain models. First, current simulation methods, advances in the understanding of chemical bonding, in the development of force fields, and in the development of chemically realistic models are described. Then, the recognition mechanisms of biomolecules on nanostructured metals, semimetals, oxides, phosphates, carbonates, sulfides, and other inorganic materials are explained, including extensive comparisons between modeling and laboratory measurements. Depending on the substrate, the role of soft epitaxial binding mechanisms, ion pairing, hydrogen bonds, hydrophobic interactions, and conformation effects is described. Applications of the knowledge from simulation to predict binding of ligands and drug molecules to the inorganic surfaces, crystal growth and shape development, catalyst performance, as well as electrical properties at interfaces are examined. The quality of estimates from molecular dynamics and Monte Carlo simulations is validated in comparison to measurements and design rules described where available. The review further describes applications of simulation methods to polymer composite materials, surface modification of nanofillers, and interfacial interactions in building materials. The complexity of functional multiphase materials creates opportunities to further develop accurate force fields, including reactive force fields, and chemically realistic surface models, to enable materials discovery at a million times lower computational cost compared to quantum mechanical methods. The impact of modeling and simulation could further be increased by the advancement of a uniform simulation platform for organic and inorganic compounds across the periodic table and new simulation methods to evaluate system performance in silico.
机译:天然和人造材料通常依赖于无机和有机化合物之间的功能界面。实例包括骨骼组织和生物矿物质,药物输送系统,催化剂,传感器,分离介质,能量转换装置和聚合物纳米复合材料。当前的实验室技术仅限于以1至100 nm的规模监视和操纵装配,既费时又费钱。计算方法已经变得越来越可靠,可以理解材料的组装和性能。这篇综述探索了与1到100 nm规模的实验相比仿真的优点,包括与较小长度尺度的量子力学和较大长度尺度的粗晶粒模型的连接。首先,描述了当前的模拟方法,化学键理解的发展,力场的发展以及化学逼真的模型的发展。然后,解释了生物分子在纳米结构金属,半金属,氧化物,磷酸盐,碳酸盐,硫化物和其他无机材料上的识别机理,包括在建模和实验室测量之间的广泛比较。根据底物,描述了软外延结合机制,离子对,氢键,疏水相互作用和构象效应的作用。检验了从仿真中获得的知识,以预测配体和药物分子与无机表面的结合,晶体生长和形状发展,催化剂性能以及界面电性能。通过比较分子动力学和蒙特卡洛模拟的估计质量,可以与所描述的测量和设计规则进行比较。该评论进一步描述了模拟方法在聚合物复合材料,纳米填料的表面改性以及建筑材料中的界面相互作用中的应用。功能性多相材料的复杂性为进一步开发包括反作用力场和化学逼真的表面模型在内的精确力场提供了机会,从而使材料发现的计算成本比量子力学方法低一百万倍。可以通过在元素周期表中开发有机和无机化合物的统一模拟平台以及评估计算机性能的新模拟方法来进一步提高建模和模拟的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号