...
首页> 外文期刊>Surveys in Geophysics: An International Review Journal of Geophysics and Planetary Sciences >Ultra-high-Degree Surface Spherical Harmonic Analysis Using the Gauss-Legendre and the Driscoll/Healy Quadrature Theorem and Application to Planetary Topography Models of Earth, Mars and Moon
【24h】

Ultra-high-Degree Surface Spherical Harmonic Analysis Using the Gauss-Legendre and the Driscoll/Healy Quadrature Theorem and Application to Planetary Topography Models of Earth, Mars and Moon

机译:使用高斯-勒根德尔和Driscoll / Healy正交定理的超高度表面球谐分析及其在地球,火星和月球的行星地形模型中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In geodesy and geophysics, spherical harmonic techniques are popular for modelling topography and potential fields with ever-increasing spatial resolution. For ultra-high-degree spherical harmonic modelling, i.e. degree 10,000 or more, classical algorithms need to be extended to avoid under- or overflow problems associated with the computation of associated Legendre functions (ALFs). In this work, two quadrature algorithms-the Gauss-Legendre (GL) quadrature and the quadrature following Driscoll/Healy (DH)-and their implementation for the purpose of ultra-high (surface) spherical harmonic analysis of spheroid functions are reviewed and modified for application to ultra-high degree. We extend the implementation of the algorithms in the SHTOOLS software package (v2.8) by (1) the X-number (or Extended Range Arithmetic) method for accurate computation of ALFs and (2) OpenMP directives enabling parallel processing within the analysis. Our modifications are shown to achieve feasible computation times and a very high precision: a degree-21,600 band-limited (=frequency limited) spheroid topographic function may be harmonically analysed with a maximum space-domain error of and m in 6 and 17 h using 14 CPUs for the GL and for the DH quadrature, respectively. While not being inferior in terms of precision, the GL quadrature outperforms the DH algorithm in terms of computation time. In the second part of the paper, we apply the modified quadrature algorithm to represent for-the first time-gridded topography models for Earth, Moon and Mars as ultra-high-degree series expansions comprising more than 2 billion coefficients. For the Earth's topography, we achieve a resolution of harmonic degree 43,200 (equivalent to 500 m in the space domain), for the Moon of degree 46,080 (equivalent to 120 m) and Mars to degree 23,040 (equivalent to 460 m). For the quality of the representation of the topographic functions in spherical harmonics, we use the residual space-domain error as an indicator, reaching a standard deviation of 3.1 m for Earth, 1.9 m for Mars and 0.9 m for Moon. Analysing the precision of the quadrature for the chosen expansion degrees, we demonstrate limitations in the implementation of the algorithms related to the determination of the zonal coefficients, which, however, do not exceed 3, 0.03 and 1 mm in case of Earth, Mars and Moon, respectively. We investigate and interpret the planetary topography spectra in a comparative manner. Our analysis reveals a disparity between the topographic power of Earth's bathymetry and continental topography, shows the limited resolution of altimetry-derived depth (Earth) and topography (Moon, Mars) data and detects artefacts in the SRTM15 PLUS data set. As such, ultra-high-degree spherical harmonic modelling is directly beneficial for global inspection of topography and other functions given on a sphere. As a general conclusion, our study shows that ultra-high-degree spherical harmonic modelling to degree 46,000 has become possible with adequate accuracy and acceptable computation time. Our software modifications will be freely distributed to fill a current availability gap in ultra-high-degree analysis software.
机译:在大地测量学和地球物理学中,球谐函数技术已广泛用于以不断提高的空间分辨率对地形和势场建模。对于超高次球面谐波建模,即10,000或更高,需要扩展经典算法以避免与关联的Legendre函数(ALF)的计算相关的欠溢或溢溢问题。在这项工作中,审查并修改了两个正交算法-高斯-勒根德(GL)正交和Driscoll / Healy(DH)之后的正交-以及它们的实现,以实现球体函数的超高(表面)球谐分析适用于超高水平。我们通过(1)用于精确计算ALF的X数(或扩展范围算术)方法和(2)在分析中实现并行处理的OpenMP指令,扩展了SHTOOLS软件包(v2.8)中算法的实现。我们的修改显示可以实现可行的计算时间和很高的精度:可以使用6和17 h的最大空间域误差和m进行谐波分析度数为21,600的带限(=频率限制)的球体形貌函数。 GL和DH正交分别有14个CPU。虽然在精度方面不逊色,但GL正交在计算时间方面优于DH算法。在本文的第二部分中,我们应用改进的正交算法将地球,月球和火星的第一个时间网格形貌模型表示为包含超过20亿个系数的超高度级数展开。对于地球的地形,我们获得谐波阶数为43,200(在空间域中等于500 m),对于月亮为46,080(相当于120 m)和火星达到23,040(相当于460 m)。为了用球谐函数表示地形函数的质量,我们使用剩余的空间域误差作为指标,地球的标准差为3.1 m,火星的标准差为1.9 m,月球的标准差为0.9 m。分析所选膨胀度的正交精度,我们证明了与确定纬向系数有关的算法的实施局限性,但是,在地球,火星和火星的情况下,不超过3、0.03和1 mm月亮分别。我们以比较的方式调查和解释了行星地形图谱。我们的分析揭示了地球测深仪的地形能力与大陆地形之间的差距,表明了高度计测深度(地球)和地形(月亮,火星)数据的分辨率有限,并检测了SRTM15 PLUS数据集中的伪像。因此,超高阶球面谐波建模直接有益于全局检查球体上的地形和其他函数。总的来说,我们的研究表明,以足够的精度和可接受的计算时间,达到46,000度的超高阶球谐模型已成为可能。我们的软件修改将免费分发,以填补当前超高级分析软件中的可用性空白。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号