首页> 外文期刊>Structural and multidisciplinary optimization >Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis
【24h】

Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis

机译:不均匀特征值分析的不确定谐波激励下的动态柔度最小化的稳健拓扑优化

获取原文
获取原文并翻译 | 示例
       

摘要

Variability of load magnitude/direction is a most significant source of uncertainties in practical engineering. This paper investigates robust topology optimization of structures subjected to uncertain dynamic excitations. The unknown-but-bounded dynamic loads/accelerations are described with the non-probabilistic ellipsoid convex model. The aim of the optimization problem is to minimize the absolute dynamic compliance for the worst-case loading condition. For this purpose, a generalized compliance matrix is defined to construct the objective function. To find the optimal structural layout under uncertain dynamic excitations, we first formulate the robust topology optimization problem into a nested double-loop one. Here, the inner-loop aims to seek the worst-case combination of the excitations (which depends on the current design, and is usually to be found by a global optimization algorithm), and the outer-loop optimizes the structural topology under the found worst-case excitation. To tackle the inherent difficulties associated with such an originally nested formulation, we convert the inner-loop into an inhomogeneous eigenvalue problem using the optimality condition. Thus the double-loop problem is reformulated into an equivalent single-loop one. This formulation ensures that the strictsense worst-case combination of the uncertain excitations for each intermediate design be located without resorting to a time-consuming global search algorithm. The sensitivity analysis of the worst-case objective function value is derived with the adjoint variable method, and then the optimization problem is solved by a gradient-based mathematical programming method. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed framework.
机译:负载大小/方向的可变性是实际工程中不确定性的最重要来源。本文研究了不确定动态激励下结构的鲁棒拓扑优化。用非概率椭球凸模型描述了未知但有界的动态载荷/加速度。优化问题的目的是在最坏情况下最大程度地降低绝对动态顺应性。为此,定义了一个通用的依从性矩阵以构造目标函数。为了在不确定的动态激励下找到最优的结构布局,我们首先将鲁棒的拓扑优化问题表述为嵌套的双环。在此,内环的目的是寻找最坏情况下的激励组合(取决于当前设计,通常通过全局优化算法找到),而外环则根据发现的结果优化结构拓扑最坏情况下的激励。为了解决与这种原始嵌套公式相关的固有困难,我们使用最优性条件将内环转换为非均匀特征值问题。因此,将双回路问题重新表述为等效的单回路问题。该公式确保了在不诉诸费时的全局搜索算法的情况下,可以定位每个中间设计的不确定激励的严格意义上的最坏情况组合。利用伴随变量法对最坏情况下的目标函数值进行了敏感性分析,然后通过基于梯度的数学规划方法解决了优化问题。数值例子说明了所提出框架的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号