首页> 外文期刊>Structural and multidisciplinary optimization >Damage tolerance based design optimisation of a fuel flow vent hole in an aircraft structure
【24h】

Damage tolerance based design optimisation of a fuel flow vent hole in an aircraft structure

机译:基于损伤容限的飞机结构中燃油流排放孔的设计优化

获取原文
获取原文并翻译 | 示例
       

摘要

This paper investigates the design optimisation of a fuel flow vent hole (FFVH) located in the wing pivot fitting (WPF) of an F-111 aircraft assuming a damage tolerance design philosophy. The design of the vent hole shape is undertaken considering the basic durability based design objectives of stress, residual (fracture) strength, and fatigue life. Initially, a stress based optimised shape is determined. Damage tolerance based design optimisation is then undertaken to determine the shape of the cutout so as to maximise its residual strength and fatigue life. For stress optimisation, the problem is analysed using the gradient-less biological algorithm and the gradient-based nonlinear programming methods. The optimum designs predicted by the two fundamentally different optimisation algorithms agree well. The optimum shapes of the vent hole are subsequently determined considering residual strength and fatigue life as the distinct design objectives in the presence of numerous 3D cracks located along the vent hole boundary. A number of crack cases are considered to investigate how the crack size affects the optimal shapes. A semi-analytical method is employed for computation of the stress intensity factors (SIF), and an analytical crack closure model is subsequently used to evaluate the fatigue life. The 3D biological algorithm is used for designing the cutout profiles that optimise residual strength and fatigue life of the component. An improved residual strength/fatigue life (depending on the optimisation objective) is achieved for the optimal designs. The variability in SIF/fatigue life around the cutout boundary is reduced, thereby making the shape more evenly fracture/fatigue critical. The vent hole shapes optimised for stress, residual strength, and fatigue life are different from each other for a given nature and size of the flaws. This emphasises the need to consider residual strength and/or fatigue life as the explicit design objective. The durability based optimal vent hole shapes depend on the initial and final crack sizes. It is also shown that a damage tolerance optimisation additionally produces a reduced weight WPF component, which is highly desirable for aerospace industries. The design space near the 'optimal' region is found to be flat. This allows us to achieve a considerable enhancement in fatigue performance without precisely identifying the local/global optimum solution, and also enables us to select a reduced weight 'near optimal' design rather than the precise optimal shape.
机译:本文以损害容忍设计理念为基础,研究了位于F-111飞机机翼枢轴配件(WPF)中的燃油流排放孔(FFVH)的设计优化。通风孔形状的设计要考虑应力,残余(断裂)强度和疲劳寿命等基于耐用性的基本设计目标。最初,确定基于应力的优化形状。然后进行基于损伤容限的设计优化,以确定切口的形状,以使其剩余强度和疲劳寿命最大化。为了优化应力,使用无梯度生物算法和基于梯度的非线性规划方法分析问题。由两种根本不同的优化算法预测的最优设计非常吻合。随后,在沿排气孔边界存在大量3D裂纹的情况下,将剩余强度和疲劳寿命作为不同的设计目标,确定排气孔的最佳形状。考虑了许多裂纹情况,以研究裂纹尺寸如何影响最佳形状。使用半分析方法计算应力强度因子(SIF),随后使用分析性裂纹闭合模型评估疲劳寿命。 3D生物算法用于设计切口轮廓,以优化组件的剩余强度和疲劳寿命。对于最佳设计,可以提高残余强度/疲劳寿命(取决于优化目标)。切口边界周围的SIF /疲劳寿命的可变性减小,从而使形状更加均匀地断裂/疲劳。对于缺陷的给定性质和大小,针对应力,残余强度和疲劳寿命进行优化的排气孔形状互不相同。这强调了需要将残余强度和/或疲劳寿命视为明确的设计目标。基于耐久性的最佳排气孔形状取决于初始和最终的裂纹尺寸。还显示出,损伤容限优化还额外产生了重量减轻的WPF组件,这对于航空航天工业而言是非常需要的。发现“最佳”区域附近的设计空间是平坦的。这使我们能够在不精确确定局部/全局最佳解决方案的情况下,实现疲劳性能的显着提高,并且还使我们能够选择减轻重量的“近最佳”设计,而不是精确的最佳形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号