首页> 外文期刊>Stereotactic and Functional Neurosurgery: Official Journal of the World Society for Stereotactic and Functional Neurosurgery >Radially Branched Deployment for More Efficient Cell Transplantation at the Scale of the Human Brain.
【24h】

Radially Branched Deployment for More Efficient Cell Transplantation at the Scale of the Human Brain.

机译:径向分支部署,可在人脑范围内进行更高效的细胞移植。

获取原文
获取原文并翻译 | 示例
           

摘要

Background: In preclinical studies, cell transplantation into the brain has shown great promise for the treatment of a wide range of neurological diseases. However, the use of a straight cannula and syringe for cell delivery to the human brain does not approximate cell distribution achieved in animal studies. This technical deficiency may limit the successful clinical translation of cell transplantation. Objective: To develop a stereotactic device that effectively distributes viable cells to the human brain. Our primary aims were to (1) minimize the number of transcortical penetrations required for transplantation, (2) reduce variability in cell dosing and (3) increase cell survival. Methods: We developed a modular cannula system capable of radially branched deployment (RBD) of a cell delivery catheter at variable angles from the longitudinal device axis. We also developed an integrated catheter-plunger system, eliminating the need for a separate syringe delivery mechanism. The RBD prototype was evaluated in vitro and in vivo with subcortical injections into the swine brain. Performance was compared to a 20G straight cannula with dual side ports, a device used in current clinical trials. Results: RBD enabled therapeutic delivery in a precise 'tree-like' pattern branched from a single initial trajectory, thereby facilitating delivery to a volumetrically large target region. RBD could transplant materials in a radial pattern up to 2.0 cm from the initial penetration tract. The novel integrated catheter-plunger system facilitated manual delivery of small and precise volumes of injection (1.36 ?? 0.13 ??l per cm of plunger travel). Both dilute and highly concentrated neural precursor cell populations tolerated transit through the device with high viability and unaffected developmental potential. While reflux of infusate along the penetration tract was problematic with the use of the 20G cannula, RBD was resistant to this source of cell dose variability in agarose. RBD enabled radial injections to the swine brain when used with a modern clinical stereotactic system. Conclusions: By increasing the total delivery volume through a single transcortical penetration in agarose models, RBD strategy may provide a new approach for cell transplantation to the human brain. Incorporation of RBD or selected aspects of its design into future clinical trials may increase the likelihood of successful translation of cell-based therapy to the human patient.
机译:背景:在临床前研究中,将细胞移植到大脑中显示出治疗多种神经系统疾病的巨大希望。然而,使用直管和注射器将细胞递送至人脑不能近似在动物研究中获得的细胞分布。这种技术缺陷可能会限制细胞移植的成功临床翻译。目的:开发一种能够将活细胞有效分配到人脑的立体定向设备。我们的主要目标是(1)尽量减少移植所需的经皮穿刺次数,(2)减少细胞剂量的变异性,(3)提高细胞存活率。方法:我们开发了一种模块化的插管系统,该系统能够以与设备纵向轴线成可变角度的径向方式展开细胞输送导管的RBD。我们还开发了集成的导管-柱塞系统,从而无需单独的注射器输送机构。通过在猪脑皮层下注射,在体外和体内评估了RBD原型。将其性能与当前临床试验中使用的带有双侧端口的20G直插管进行了比较。结果:RBD能够以精确的“树状”模式(从单个初始轨迹分支)进行治疗性递送,从而有利于递送至体积较大的目标区域。 RBD可以以放射状移植材料,距离最初的穿透通道最多2.0 cm。新颖的集成式导管-柱塞系统方便了小剂量和精确注射量的手动输送(每厘米柱塞行程为1.36升0.13升l)。稀和高度集中的神经前体细胞群体均能以高生存力和不受影响的发展潜力耐受通过该装置的转运。尽管输注液沿渗透通道的回流在使用20G插管时存在问题,但RBD对这种琼脂糖中细胞剂量变异性的来源有抵抗力。当与现代临床立体定向系统配合使用时,RBD可以向猪脑进行放射状注射。结论:通过在琼脂糖模型中通过单次穿皮质渗透增加总递送量,RBD策略可能为细胞移植到人脑提供新的方法。将RBD或其设计的选定方面纳入未来的临床试验可能会增加将基于细胞的疗法成功翻译给人类患者的可能性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号