...
首页> 外文期刊>Sedimentology: Journal of the International Association of Sedimentologists >Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones
【24h】

Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones

机译:石炭质泥岩中多相方解石-黄铁矿-重晶石混凝土生长条件的同位素约束

获取原文
获取原文并翻译 | 示例
           

摘要

Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ~(13)C = -28.7‰ PDB and δ~(18)O = -1.6‰ PDB through to δ~(13)C = -6.9‰ PDB and δ~(18)O = -14.6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ~(13)C = -12.0 to -10.1‰ PDB and δ~(18)O = -5.7 to -5.6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ~(34)S = +24.8‰ CDT and δ~(18)O = +16.4‰ SMOW), indicating formation from near-surface, sulphate-depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ~(34)S = +6 to +11‰ CDT and δ~(18)O = +8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.
机译:下石炭统卡吞页岩层中的碳酸盐岩凝结物在固结基质中或不同世代的裂隙中都含有成岩的黄铁矿,方解石和重晶石。黄铁矿是在固结生长之前通过沉积物中的硫酸盐还原而形成的,然后主要在固结中心继续形成。从δ〜(13)C = -28.7‰PDB和δ〜(18)O = -1.6‰PDB一直到δ〜(13)C = -6.9‰PDB和δ〜(18),隔ept方解石显示出连续的同位素趋势。 O = -14.6‰PDB。这种趋势是由于(1)最初是从硫酸盐还原产生的碳酸盐来源而来的,而甲烷的产甲烷作用增加了。 (2)埋藏/温度效应或从流水中添加同位素轻氧。固结性碳酸盐碳酸盐必须至少部分早于最早的隔片水泥,并因此使用相同的碳酸盐来源。因此,它们的同位素组成(δ〜(13)C = -12.0至-10.1‰PDB和δ〜(18)O = -5.7至-5.6‰PDB)只能通过将硫酸盐还原制得的碳酸盐水泥与水泥混合而产生。含有越来越多比例的甲烷化作用产生的碳酸盐,以及直接或间接地来自骨架碳酸盐的碳酸盐。因此,无定形生长无处不在,在生长过程中,在整个凝固体中逐渐添加水泥。固结物中的重晶石裂隙中含有重晶石。早期基质相中的重晶石具有同位素组成(δ〜(34)S = + 24.8‰CDT和δ〜(18)O = + 16.4‰SMOW),表明它是由近表层贫硫酸盐孔隙水形成的。在9月后期的重晶石具有不寻常的同位素组成(δ〜(34)S = +6至+ 11‰CDT和δ〜(18)O = +8至+ 11‰SMOW),这需要后期添加同位素光通过缺氧硫化物氧化(使用三价铁)或溶解在陨石水中的硫酸盐将硫酸盐硫酸盐加入到孔隙水中。碳同位素和生物标记数据表明,陷在隔壁裂缝中的油源于封闭沉积物中干酪根的成熟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号