...
首页> 外文期刊>Ceramic Engineering and Science Proceedings >Effects of 3D-fiber architecture on tensile stress-strain behavior of SiC/SiC composites
【24h】

Effects of 3D-fiber architecture on tensile stress-strain behavior of SiC/SiC composites

机译:3D纤维结构对SiC / SiC复合材料拉伸应力-应变行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The structural performance of ceramic matrix composites for both low and high-temperature applications depends strongly on key properties contained in their tensile stress-strain behavior after fabrication. These include elastic modulus, matrix cracking stress, and ultimate strength. To determine the effects of fiber architecture on these properties, melt-infiltrated SiC/SiC composite panels were fabricated using 3D orthogonal preforms and 2D fabric lay-ups with various weave patterns. To maximize composite performance, all architectures were constructed with Sylramic SiC fibers in the in-plane directions. Where possible, the preforms and fabrics were then subjected to a treatment that in-situ formed Sylramic-iBN fibers, a fiber type which typically yields composites with the highest tensile and rupture strength. For the 3D preforms, three types of low-modulus z-fibers were used to allow high in-plane fiber fractions, equivalent to those for the 2D composites. Even though the 3D-orthogonal panels displayed well-aligned x and y fibers with low crimp and lower matrix porosity, the room-temperature elastic modulus, cracking stress, and ultimate strength of these panels were generally lower than the 2D-woven panels. It is believed that the reduced modulus and cracking stress were primarily related to fiber-rich regions, the reduced strength to matrix-rich regions.
机译:陶瓷基复合材料在低温和高温下的结构性能在很大程度上取决于制造后其拉伸应力-应变行为所包含的关键特性。这些包括弹性模量,基体开裂应力和极限强度。为了确定纤维结构对这些性能的影响,使用具有各种编织图案的3D正交预成型件和2D织物叠层制造了熔渗的SiC / SiC复合板。为了最大程度地提高复合材料的性能,所有架构均在平面内使用Sylramic SiC纤维制成。然后在可能的情况下,对预成型坯和织物进行原位成型Sylramic-iBN纤维的处理,这种纤维通常可产生具有最高拉伸强度和断裂强度的复合材料。对于3D预成型坯,使用了三种类型的低模量Z纤维以允许较高的面内纤维分数,这与2D复合材料相同。即使3D正交面板显示的x和y纤维排列正确,卷曲度低且基体孔隙率较低,但这些面板的室温弹性模量,破裂应力和极限强度通常低于2D编织面板。可以认为,模量和开裂应力的降低主要与富含纤维的区域有关,而强度与富含基质的区域有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号