...
首页> 外文期刊>Space Science Reviews >Polarization effects of the finite-size low-altitude ionosphere [Review]
【24h】

Polarization effects of the finite-size low-altitude ionosphere [Review]

机译:有限尺寸的低空电离层的极化效应[综述]

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We use two-fluid or Hall effect MHD description of weakly-ionized stratified atmosphere to describe several polarization features of the MHD disturbance penetration. We employ a pair of functions for the electric and magnetic field components ratio which can be treated analytically. As an example we derive an approximation to the case of the MHD waves in the Earth's Hall ionosphere and demonstrate its different polarization responses (ellipticity and rotation) for Alfven and fast magnetosonic modes depending on the Hall region thickness. Neglecting the Hall thickness effect we derive previously obtained, well-known results for the rotation of the polarization plane of the MHD waves (Dungey, 1963; Nishida, 1964; Inoue, 1973; Hughes, 1974; Hughes and Southwood, 1976). The ionospheric effects are more essential for the polarization of the fast magnetosonic waves. The polarization changes of the magnetosonic waves are expressed as a function of i) the ratio (R) of the height-integrated Hall (Sigma (H)) and Pedersen (Sigma (p)) conductivities (conductances) in the Hall region (85-125 km) and ii) a wave/magnetospheric parameter (A(m)) and the ratio A(m)/Sigma (p). The wave/magnetospheric parameter A(m) depends on the wave frequency and the horizontal scale of the ULF waves. Using standard models IRI 90 and MSIS 86, responses of ULF magnetosonic waves to seasonal/diurnal ionospheric variations at subauroral/middle latitudes are illustrated for arbitrary, but reasonable values of the wave/magnetospheric parameter A(m). The polarization plane rotation for the ULF compressional waves ranges between 0 and pi /2 and reaches the classical pi /2 degree only for special cases. Along with the rotation effect an ellipticity effect has also local time course. These findings suggest a new dissipative mechanism (non-resonant) of transformation of magnetosonic waves into Alfven modes in the ionosphere. In addition we suggest a physical insight for the MHD wave transformation effects by the ionosphere. These findings should be taken into account for the analysis of various polarization features of the geomagnetic pulsations observed on the ground. Sunrise effect on the polarization of the Pc 3-4 pulsations (Saka et al., 1982), the effect of transformation of pure compressional ULF disturbance in the magnetosphere into transverse wave on ground (Lanzerotti and Tartaglia, 1972) proved to be explained in terms of both the polarization rotation and the ellipticity mechanism by the ionosphere. Simultaneous measurements of the electric and magnetic field of ULF waves at ground and balloon heights have revealed polarizations of opposite handedness (Bering et al., 1995). It is shown that the polarization changes of the magnetosonic wave through a horizontally homogeneous high-latitude ionosphere continue further through the atmosphere and would result in different polarization states for the electric and magnetic fields. The northern (southern) hemisphere ionosphere causes an additional left(right)-hand polarization effect in the ionosphere/atmosphere produced mostly on the ULF wave magnetic field. The opposite handedness of the Pc5 wave polarization recorded at the South Pole by measurements of the ULF electric and magnetic field components (Bering et al., 1995) might be explained as a result of an influence of the ionosphere on the ULF waves of an initially left-hand polarization. [References: 36]
机译:我们使用弱电离的分层大气的两流体或霍尔效应MHD描述来描述MHD干扰穿透的几个极化特征。我们对电场和磁场分量比率采用了一对函数,可以通过分析来处理。作为示例,我们推导了地球霍尔电离层中MHD波的近似情况,并证明了根据霍尔区域厚度,Alfven模式和快速磁声模式的不同极化响应(椭圆率和旋转)。忽略霍尔厚度效应,我们得出了先前获得的众所周知的MHD波偏振面旋转的结果(Dungey,1963; Nishida,1964; Inoue,1973; Hughes,1974; Hughes and Southwood,1976)。电离层效应对于快速磁声波的极化更为重要。磁声波的极化变化表示为i)霍尔区域中高度积分霍尔(Sigma(H))和Pedersen(Sigma(p))的电导率(电导)的比(R)(85) -125 km)和ii)波/磁层参数(A(m))和比率A(m)/ Sigma(p)。波/磁层参数A(m)取决于波频率和ULF波的水平尺度。使用标准模型IRI 90和MSIS 86,说明了波峰/磁层参数A(m)的任意但合理的值,表明极低频电磁波对耳平/中纬度下的季节性/昼夜电离层变化的响应。 ULF压缩波的偏振面旋转范围在0到pi / 2之间,仅在特殊情况下才达到经典pi / 2度。除了旋转效果外,椭圆度效果还具有局部时程。这些发现表明在电离层中磁声波转换为Alfven模式的新耗散机制(非共振)。另外,我们建议对电离层的MHD波转换效应有一个物理的认识。在分析在地面上观察到的地磁脉动的各种极化特征时,应考虑到这些发现。日出效应对Pc 3-4脉动的极化作用有影响(Saka等,1982),地磁中纯压缩性ULF扰动转化为地面上的横波的影响(Lanzerotti和Tartaglia,1972)得到了解释电离层的极化旋转和椭圆率机制。在地面和气球高度同时测量ULF波的电场和磁场时,发现了相反旋向的极化(Bering等,1995)。结果表明,在水平均匀的高纬度电离层中,磁声波的极化变化将继续在大气中传播,并且将导致电场和磁场的极化状态不同。北半球(南半球)电离层会在电离层/大气中产生额外的左(右)手极化效应,这主要是由ULF波磁场产生的。由于电离层对最初的ULF波的影响,可能解释了通过测量ULF电场和磁场分量在南极记录的Pc5波极化的反手性(Bering等,1995)。左旋极化。 [参考:36]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号