首页> 外文期刊>Soil Science Society of America Journal >Determination of Soil Organic Matter and Carbon Fractions in Forest Top Soils using Spectral Data Acquired from Visible-Near Infrared Hyperspectral Images
【24h】

Determination of Soil Organic Matter and Carbon Fractions in Forest Top Soils using Spectral Data Acquired from Visible-Near Infrared Hyperspectral Images

机译:利用可见近红外高光谱图像获得的光谱数据测定森林表层土壤中的有机质和碳组分

获取原文
获取原文并翻译 | 示例
       

摘要

Adequately quantifying C sequestration in soil, post 2012, can be used to offset C losses in national greenhouse gas inventory but requires very large sample numbers and rapid analytical methods. Wet and dry combustion methods are analytically accurate but expensive and slow while optical techniques have the potential to provide rapid, cost-effective alternatives. This study examined the potential of spectral data acquired from laboratory hyperspectral imaging (HSI) systems and chemometric analysis to predict soil organic matter (OM), total carbon (TC), inorganic carbon (IC), and organic carbon (OC) fractions in forest top soils from Avondale Forest Park, Rathdrum, County Wicklow, Ireland. The spectral range of hyperspectral instruments operating in the visible (VIS; 400-1000 nm), near infrared (NIR; 880-1720 nm) and combined VIS-NIR regions (400-1720 nm) were investigated for each soil property. Validations using a randomly selected 25% partition of the dataset indicated that the best soil TC and OC predictions were achieved in the VIS region, a ratio of predicted deviation (RPD) indicated excellent predictions for both TC (3.39) and OC (3.39). The best OM and IC prediction was achieved in the VIS-NIR region, OM ranked as excellent (3.06) but IC produced models with very poor predictive ability (1.26) due to a limited range of concentrations. Model robustness was tested using alternative methods of partitioning the dataset (n = 152). Partitioning following stratification by TC or OC concentration improved accuracy by 1.4-fold, while soil OM accuracy was improved 1.2-fold after stratifying by sampling site. When independent validations were tested on "new sites" by holding each sampling site out of model calibration in turn, OC predicted with reasonable root mean square error (RMSE) for most sites but produced RPD values indicating poor predictive performance. A certain degree of uniqueness associated with soils at new sites caused model accuracy to deteriorate. Overall results indicate that there is much potential to develop hyperspectral imaging as a methodology for soil C and OM analyses, but soils from the intended target site must be included in the model calibration to maintain model prediction accuracy.
机译:2012年后,可以对土壤中的碳固存进行充分定量,以抵消国家温室气体清单中的碳损失,但需要非常大的样本数量和快速的分析方法。湿式和干式燃烧方法在分析上是准确的,但昂贵且缓慢,而光学技术有潜力提供快速,具有成本效益的替代方法。这项研究检查了从实验室高光谱成像(HSI)系统和化学分析获得的光谱数据的潜力,以预测森林中的土壤有机质(OM),总碳(TC),无机碳(IC)和有机碳(OC)组分爱尔兰威克洛郡拉德鲁姆的Avondale森林公园中的土壤。对于每种土壤性质,研究了在可见光(VIS; 400-1000 nm),近红外(NIR; 880-1720 nm)和VIS-NIR组合区域(400-1720 nm)中操作的高光谱仪器的光谱范围。使用数据集的随机选择的25%分区进行的验证表明,在VIS区域中实现了最佳的土壤TC和OC预测,预测偏差比(RPD)表示TC(3.39)和OC(3.39)均具有出色的预测。在VIS-NIR区域获得了最佳的OM和IC预测,OM被评为优秀(3.06),但由于浓度范围有限,IC产生的模型的预测能力非常差(1.26)。使用对数据集进行分区的替代方法(n = 152)测试了模型的稳健性。通过TC或OC浓度分层后的分区将精度提高了1.4倍,而通过采样点进行分层后,土壤OM精度提高了1.2倍。当通过依次使每个采样站点脱离模型校准而在“新站点”上测试独立验证时,大多数站点的OC预测具有合理的均方根误差(RMSE),但产生的RPD值表明预测性能较差。与新站点土壤相关的一定程度的唯一性导致模型精度下降。总体结果表明,开发高光谱成像技术作为土壤C和OM分析的方法很有潜力,但是必须将目标目标位置的土壤包括在模型校准中,以保持模型预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号