首页> 外文期刊>Soil Science Society of America Journal >Relative water uptake rate as a criterion for trickle irrigation system design: III. Subsurface trickle irrigation.
【24h】

Relative water uptake rate as a criterion for trickle irrigation system design: III. Subsurface trickle irrigation.

机译:相对吸水率作为滴灌系统设计的标准:III。地下滴灌。

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of this study was to apply a coupled source-sink modeling approach to subsurface trickle irrigation design, to determine the maximum possible relative water uptake rate and to evaluate its dependence on soil type, emitter depths, atmospheric evaporative demand, and rooting zone size. The early stage of plant growth (sink-above-source scenario) was modeled by placing a point sink of unknown strength between the soil surface (evaporating or nonevaporating) and a subsurface point source of given strength; for the subsequent stage of plant growth, i.e., most of the irrigation season, a point sink was located below the subsurface source. The principal approach involved determination of the relative water uptake by applying the maximum suction pressure (zero matric flux potential) at an isobar that bounds a conceived rooting zone domain. A major motivation for using subsurface drip irrigation is to reduce evaporation. This study shows that evaporation affects mainly the ratio of water loss by deep percolation to water loss by evaporation and that it has negligible influence on the water uptake rate. In the early-stage scenario, water uptake competes with gravitational forces. Therefore water uptake is generally small and decreases significantly with increasing root-system radius. In the late-stage scenario, the relative water uptake rate still decreases as the root system radius increases, but it remains larger than in the early-stage scenario. Some features of the flow field, with and without evaporation, are illustrated by plotting streamlines and contours of constant water saturation degree for these two scenarios.Digital Object Identifier http://dx.doi.org/10.2136/sssaj2009.0340
机译:这项研究的目的是将一种源-汇耦合模型方法应用于地下滴灌设计,以确定最大可能的相对吸水率,并评估其对土壤类型,排放深度,大气蒸发需求和生根区大小的依赖性。 。通过在土壤表面(蒸发或非蒸发)和给定强度的地下点源之间放置强度未知的点池,来模拟植物生长的早期阶段(源以上的情况)。在植物生长的后续阶段(即大部分灌溉季节),点汇位于地下源下方。主要方法涉及通过在限定了生根区域的等压线上施加最大抽吸压力(零基体通量势)来确定相对吸水率。使用地下滴灌的主要动机是减少蒸发。这项研究表明,蒸发主要影响深层渗滤造成的水分流失与蒸发产生的水分流失的比率,并且对吸水率的影响可以忽略不计。在早期情况下,吸水与重力竞争。因此,水分吸收通常很小,并且随着根系半径的增加而显着降低。在后期情况下,相对吸水率仍随根系半径的增加而降低,但仍比早期情况下的大。通过针对这两种情况绘制流线和恒定水饱和度的轮廓来说明流场的一些特征(有无蒸发)。数字对象标识符http://dx.doi.org/10.2136/sssaj2009.0340

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号