首页> 外文期刊>Solid state ionics >Microstructural studies on degradation of interface between LSM-YSZ cathode and YSZ electrolyte in SOFCs
【24h】

Microstructural studies on degradation of interface between LSM-YSZ cathode and YSZ electrolyte in SOFCs

机译:SOFCs中LSM-YSZ阴极和YSZ电解质界面降解的微观结构研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The changes in the cathode/electrolyte interface microstructure have been studied on anode-supportedtechnological solid oxide fuel cells (SOFCs) that were subjected to long-term (1500 h) testing at 750 °C underhigh electrical loading (a current density of 0.75 A/cm~2). These cells exhibit different cathode degradationrates depending on, among others, the composition of the cathode gas, being significantly smaller in oxygenthan in air. FE-SEM and high resolution analytical TEM were applied for characterization of the interface on asubmicron- and nano-scale. The interface degradation has been identified as the loss of LSM coverage andthe loss of three-phase-boundary (TPB) length. Firstly, the degradation is caused by the size reduction ofthe individual LSM/YSZ electrolyte contact points (areas) that are initially of 100-200 nm in diameter.Quantitative microstructure evaluation shows that in the cell tested in air this mechanism contributes to anestimated overall reduction in the LSM coverage and the TPB length by 50 and 30%, respectively. For the celltested in oxygen the corresponding values are 10 and 4%. Secondly, in the cell tested in air the LSM coverageand the TPB length appear to decrease further due to the more pronounced formation of insulating zirconatephases that are present locally and preferably in LSM/YSZ electrolyte contact areas. The effects of the cathodegas on the interface degradation are discussed considering the change of oxygen activity at the interface,possible changes in the Mn diffusion pattern as well as the LSM/YSZ reactivity. Finally, based onthermodynamic calculations a T-p(0_2) diagram predicting the safe and risky operation conditions in termsof the zirconate formation is presented and compared with the experimental observations.
机译:在阳极支撑的技术固体氧化物燃料电池(SOFC)上研究了阴极/电解质界面微观结构的变化,这些燃料电池在750°C的高电负载(电流密度为0.75 A /厘米〜2)。这些电池表现出不同的阴极降解速率,这取决于阴极气体的成分,其中氧气的含量明显小于空气中的含量。 FE-SEM和高分辨率分析TEM用于亚微米和纳米级界面的表征。已将接口降级确定为LSM覆盖范围的丢失和三相边界(TPB)长度的丢失。首先,降解是由于单个LSM / YSZ电解质接触点(区域)的尺寸减小而引起的,该接触点的直径最初为100-200 nm。定量的微观结构评估表明,在空气中测试的电池中,这种机理有助于估计总体减小LSM覆盖率和TPB长度分别减少了50%和30%。对于在氧气中进行细胞测试的电池,相应的值为10%和4%。其次,在空气中测试的电池中,LSM覆盖率和TPB长度似乎进一步降低,这是由于局部存在且优选存在于LSM / YSZ电解质接触区域中的绝缘锆酸酯相的形成更为明显。讨论了阴极气体对界面降解的影响,考虑了界面处氧气活性的变化,Mn扩散模式的可能变化以及LSM / YSZ反应性。最后,基于热力学计算,给出了预测锆酸盐形成的安全和危险操作条件的T-p(0_2)图,并将其与实验观察结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号