...
首页> 外文期刊>Solar physics >New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
【24h】

New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

机译:大气层凝结的辐射水动力模型对白光耀斑发射的新见解

获取原文
获取原文并翻译 | 示例

摘要

The heating mechanism at high densities during M-dwarf flares is poorly understood. Spectra of M-dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at , and 3) an apparent pseudo-continuum of blended high-order Balmer lines between and . These properties are not reproduced by models that employ a typical "solar-type" flare heating level of in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological three-component interpretation. We present a new 1D radiative-hydrodynamic model of an M-dwarf flare from precipitating nonthermal electrons with a high energy flux of . The simulation produces bright near-ultraviolet and optical continuum emission from a dense (), hot () chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a blackbody-like continuum component and a low Balmer jump ratio result from optically thick Balmer () and Paschen recombination () radiation, and thus the properties of the flux spectrum are caused by blue ( ) light escaping over a larger physical depth range than by red ( ) and near-ultraviolet ( ) light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high-order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.
机译:人们对M矮耀斑在高密度下的加热机理了解甚少。在光学和近紫外线波长范围内的M矮耀斑光谱在脉冲阶段揭示了三个连续体成分:1)能量占优势的黑体成分,色温为蓝光学; 2)少量的巴尔默在和附近3)的近紫外线中的连续谱连续发射。与之间的混合高阶Balmer线的表观伪连续谱。使用非热电子中典型的“太阳型”耀斑加热能级的模型无法再现这些特性,因此我们对这些光谱的理解仅限于现象学的三组分解释。我们提出了一种新的一维M矮耀斑的一维辐射流体动力学模型,它是通过沉淀具有高能量通量的非热电子而产生的。该模拟通过密集的(),热的()色球凝结产生明亮的近紫外线和光学连续体发射。第一次,在辐射流体动力耀斑模型中自洽地产生了观察到的色温和Balmer跳跃比。我们发现,黑体状的连续谱分量和低的Balmer跳跃比是由光学上较厚的Balmer()和Paschen重组()辐射引起的,因此通量谱的特性是由蓝色()光在较大的物理深度上逸出引起的范围要比红色()和近紫外线()亮。为了模拟先前归因于重叠的Balmer谱线的近紫外线伪连续谱,我们包含了Landau-Zener转换产生的额外Balmer连续谱不透明性,该不透明性是由于在稠密,部分电离的气氛中氢的合并高阶能级产生的。这揭示了一种新的诊断方法,可以诊断在dMe和太阳耀斑中被加热的大气最密集区域中的环境电荷密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号