...
首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Correlating internal stresses, electrical activity and defect structure on the micrometer scale in EFG silicon ribbons
【24h】

Correlating internal stresses, electrical activity and defect structure on the micrometer scale in EFG silicon ribbons

机译:在EFG硅带中以微米尺度关联内部应力,电活动和缺陷结构

获取原文
获取原文并翻译 | 示例

摘要

In the present paper, we study the influence of defects through their stress fields on the electrical activity and residual stress states of as-grown edge-defined film-feed (EFG) multicrystalline silicon (mc-Si) ribbons. We apply a combination of micro-Raman spectroscopy, electron beam induced current, defect etching and electron backscatter diffraction techniques that enables us to correlate internal stresses, recombination activity and microstructure on the micrometer scale. The stress fields of defect structures are considered to be too small (several tens of MPa) to influence directly the electrical activity, but they can enhance it via stress-induced accumulation of metallic impurities. It is commonly found that not all recombination-active dislocations on grain boundaries (GBs) and within grains are accompanied by internal stresses. The reason for this is that dislocations interact with each other and tend to locally rearrange in configurations of minimum strain energy in which their stress fields can cancel partially, totally or not at all. The outcome is a nonuniform distribution of electrical activity and internal stresses along the same GB, along different GBs of similar character as well as inside the same grain and inside different grains of similar crystallographic orientations. Our work has implications for developing crystal growth procedures that may lead to reduced internal stresses and consequently to improved electrical quality and mechanical stability of mc-Si materials by means of controlled interaction between structural defects.
机译:在本文中,我们研究了通过缺陷应力场对缺陷的影响,该缺陷对生长的边缘限定薄膜馈送(EFG)多晶硅(mc-Si)薄带的电活动和残余应力状态的影响。我们应用了微拉曼光谱,电子束感应电流,缺陷蚀刻和电子背散射衍射技术的组合,使我们能够在千分尺尺度上关联内部应力,复合活性和微观结构。缺陷结构的应力场被认为太小(数十MPa),无法直接影响电活动,但是它们可以通过应力诱导的金属杂质积累来增强电活动。通常发现,并非所有晶界(GBs)和晶粒内的复合活性位错都伴有内应力。其原因是,位错彼此相互作用,并趋向于以最小应变能的配置进行局部重排,在最小应变能的配置中,它们的应力场可以部分,全部或完全不抵消。结果是沿着相同GB,沿着相似特征的不同GB,在相同晶粒内以及在具有相似晶体学取向的不同晶粒内的电活动和内应力的不均匀分布。我们的工作对开发晶体生长程序具有影响,该过程可能导致内部应力降低,并因此通过结构缺陷之间的受控相互作用而改善mc-Si材料的电气质量和机械稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号