首页> 外文期刊>Chaos >Breaking of space-time symmetries in modulated traveling waves
【24h】

Breaking of space-time symmetries in modulated traveling waves

机译:调制行波中时空对称性的破坏

获取原文
获取原文并翻译 | 示例
           

摘要

In many areas of physics such as hydrodynamics, modulational instabilities of traveling waves often occur as a first step in the route to spatio-temporal complexity and turbulence. In this paper, we investigate the structure of waves whose amplitude is spatially and/or temporally modulated. For a nonmodulated traveling wave u(x,t) that travels uniformly at velocity c, a very simple space-time symmetry occurs, namely u(x-x_0,t) = u(x,t-t_0) with x_0 = ct_0. A consequence of this symmetry is that the wave can be decomposed into spatial and temporal orthogonal modes that are merely Fourier modes. In this case, the Fourier decomposition is the natural modal decomposition to adopt. When such a wave undergoes a spatio-temporal modulation of its amplitude, sidebands form around the various Fourier wave numbers and/or frequencies of the carrier wave in the Fourier spectrum. If the modulation is of long wavelength, sidebands do not intersect and it is possible to give a precise meaning to the new space-time symmetry in this case. As a result, such a wave is the superposition of orthogonal spatial and temporal modes that are slight (and continuous) deformations of the original Fourier modes of the carrier wave. In this paper, we explore the case of modulation of short wavelengths causing neighboring sidebands to intersect in Fourier space. We show how the latter may have the effect of breaking the space-time symmetry of the carrier wave, thus destroying the coherent displacement of the orthogonal modes composing the wave. We also fully determine analytically the spatial and temporal orthogonal modes (eigenfunctions) of the traveling wave, which are now far from being Fourier modes, and write explicitly the corresponding eigenspectrum law. In turn, since the eigenfunctions can easily be computed from space-time signals, our results can be used to characterize the dynamical characteristics of the latter.
机译:在许多物理领域,例如流体动力学中,行波调制不稳定性通常是时空复杂性和湍流路径的第一步。在本文中,我们研究了振幅在空间和/或时间上已调制的波的结构。对于以速度c均匀传播的非调制行波u(x,t),会发生非常简单的时空对称,即u(x-x_0,t)= u(x,t-t_0),其中x_0 = ct_0。这种对称性的结果是,波可以分解成仅仅是傅立叶模式的空间和时间正交模式。在这种情况下,傅立叶分解是要采用的自然模态分解。当这样的波经历其幅度的时空调制时,在傅立叶频谱中的载波的各种傅立叶波数和/或频率周围形成边带。如果调制是长波长的,则边带不会相交,并且在这种情况下,可以为新的时空对称性赋予精确的含义。结果,这样的波是正交的空间和时间模式的叠加,正交和时空模式是载波原始傅里叶模式的轻微(连续)变形。在本文中,我们探讨了短波长调制导致相邻边带在傅立叶空间中相交的情况。我们展示了后者可能如何破坏载波的时空对称性,从而破坏组成该波的正交模式的相干位移。我们还完全分析地确定了行波的空间和时间正交模(本征函数),现在它们已经远离傅里叶模,并且明确地写出了相应的本征谱定律。反过来,由于可以轻松地从时空信号中计算出本征函数,因此我们的结果可用于表征后者的动力学特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号