首页> 外文期刊>Soil Biology & Biochemistry >Changes in forest soil organic matter pools after a decade of elevated CO2 and O-3
【24h】

Changes in forest soil organic matter pools after a decade of elevated CO2 and O-3

机译:二氧化碳和O-3升高十年后森林土壤有机质库的变化

获取原文
获取原文并翻译 | 示例
           

摘要

The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O-3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O-3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O-3 Enrichment (FACE) experiment. Tracer amounts of (NH4+)-N-15 were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papynlera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O-3 treatments. The N-15 tracer and strongly depleted C-13-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O-3 significantly altered N-15 recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O-3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response
机译:大气中二氧化碳(CO2)上升的影响可以部分通过提高净初级生产力和增加植物生物量和土壤有机质(SOM)中的C储量来减轻。但是,森林土壤中的固碳可能被其他环境变化所抵消,例如对流层臭氧(O-3)的增加,或因特定物种对二氧化碳浓度升高的生长反应而异。为了了解预计的大气中CO2和O-3的增加如何改变SOM的形成,我们在莱茵兰德自由空气CO2-O-3富集(FACE)实验中使用物理分馏来表征土壤C和N。将示踪量的(NH4 +)-N-15施用到暴露于因子CO2和O-3处理下的杨树,桃李子-桦木和桃李子-宏cer的森林地上。在过去的四年中,将N-15示踪剂和严重消耗的C-13-CO2示为SOM馏分。随着时间的推移,相对于周围的CO2,在较高的CO2下,粗颗粒有机物(cPOM)中的C和N升高,而矿物相关有机物(MAOM)中的C和N降低。作为主要影响,CO2和O-3均未显着改变SOM中N-15的回收率。在我们的研究期间,升高的CO2会显着增加所有SOM馏分中的新C,并显着降低细POM(fPOM)和MAOM中的旧C。总体而言,我们的观察结果表明,升高的CO2改变了该站点的SOM循环,从而有利于碳和氮在不稳定的池中积累,且周转速度更快。升高的O-3具有相反的作用,可将cPOM N显着降低15%,并将C:N比显着提高7%。我们的结果表明,CO2可以提高SOM的转化率,从而有可能限制陆地生态系统中的长期固碳。植物群落组成是这种反应程度的重要决定因素

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号