...
首页> 外文期刊>Soil Biology & Biochemistry >Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils
【24h】

Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils

机译:物理和生物因素之间的相互作用影响南极旱谷土壤中的CO2通量

获取原文
获取原文并翻译 | 示例
           

摘要

Soil carbon dioxide (CO2) flux is an integrative measure of ecosystem functioning representing both biotic and physical controls over carbon (C) balance. In the McMurdo Dry Valleys of Antarctica, soil CO2 fluxes (approximately -0.1-0.15 omol m-2 s-1) are generally low, and negative fluxes (uptake of CO2) are sometimes observed. A combination of biological respiration and physical mechanisms, driven by temperature and mediated by soil moisture and mineralogy, determine CO2 flux and, therefore, soil organic C balance. The physical factors important to CO2 flux are being altered with climate variability in many ecosystems including arid forms such as the Antarctic terrestrial ecosystems, making it critical to understand how climate factors interact with biotic drivers to control soil CO2 fluxes and C balances. We measured soil CO2 flux in experimental field manipulations, microcosm incubations and across natural environmental gradients of soil moisture to estimate biotic soil respiration and abiotic sources of CO2 flux in soils over a range of physical and biotic conditions. We determined that temperature fluctuations were the most important factor influencing diel variation in CO2 flux. Variation within these diel CO2 cycles was explained by differences in soil moisture. Increased temperature (as opposed to temperature fluctuations) had little or no effect on CO2 flux if moisture was not also increased. We conclude that CO2 flux in dry valley soils is driven primarily by physical factors such as soil temperature and moisture, indicating that future climate change may alter the dry valley soil C cycle. Negative CO2 fluxes in arid soils have recently been identified as potential net C sinks. We demonstrate the potential for arid polar soils to take up CO2, driven largely by abiotic factors associated with climate change. The low levels of CO2 absorption into soils we observed may not constitute a significant sink of atmospheric CO2, but will influence the interpretation of CO2 flux for the dry valley soil C cycle and possibly other arid environments where biotic controls over C cycling are secondary to physical drivers.
机译:土壤二氧化碳(CO2)通量是生态系统功能的综合度量,代表了对碳(C)平衡的生物和物理控制。在南极麦克默多干旱谷,土壤二氧化碳通量(约-0.1-0.15 omol m-2 s-1)通常很低,有时会观察到负通量(吸收二氧化碳)。由温度驱动并由土壤水分和矿物学介导的生物呼吸和物理机制的结合,决定了CO2通量,因此决定了土壤有机碳的平衡。在许多生态系统(包括干旱形式,如南极陆地生态系统)中,随着气候变化,对CO2通量重要的物理因素正在发生变化,因此了解气候因素如何与生物驱动因素相互作用以控制土壤CO2通量和碳平衡至关重要。我们在实验性田间操作,微观培养以及土壤水分的自然环境梯度中测量了土壤CO2通量,以估算生物物理呼吸作用和各种物理和生物条件下土壤中CO2通量的非生物来源。我们确定温度波动是影响CO2通量diel变化的最重要因素。这些diel CO2循环内的变化通过土壤水分的差异来解释。如果湿度也没有增加,那么升高的温度(与温度波动相反)对CO2通量几乎没有影响。我们得出的结论是,干旱谷地土壤中的CO2通量主要由土壤温度和湿度等物理因素驱动,这表明未来的气候变化可能会改变干旱谷地土壤的碳循环。最近已确定干旱土壤中的负CO2通量是潜在的净碳汇。我们证明了干旱极地土壤吸收二氧化碳的潜力,这主要是由与气候变化有关的非生物因素驱动的。我们观察到的土壤中低水平的CO2吸收可能不会构成大气中CO2的大量吸收,但会影响干旱谷地土壤C循环以及其他干旱环境(对C循环的生物控制是继而进行的)的CO2通量的解释司机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号