首页> 外文期刊>Soil Biology & Biochemistry >Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils.
【24h】

Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils.

机译:在北极冻原土壤中,低分子量溶解有机碳(DOC)和微生物碳的周转率表现出不同的温度敏感性。

获取原文
获取原文并翻译 | 示例
           

摘要

Polar ecosystems are currently experiencing some of the fastest rates of climate warming. An increase in soil temperature in High Arctic regions may stimulate soil permafrost melting and microbial activity, thereby accelerating losses of greenhouse gases. It is therefore important to understand the factors regulating the rates of C turnover in polar soils. Consequently, our aims were to: (1) assess the concentration of low molecular weight (MW) dissolved organic carbon (DOC) in soil, (2) to investigate the temperature-dependent turnover of specific low MW compounds, and (3) to analyse the influence of substrate concentration on C cycling. Microbial mineralisation of labile low MW DOC in two High Arctic tundra soils was investigated using soil solutions spiked with either 14C-labelled glucose or amino acids. Spiked solutions were added to the top- and sub-soil from two ecosystem types (lichen and Carex dominated tundra), maintained at three temperatures (4-20 degrees C), and their microbial mineralisation kinetics monitored. 14CO2 evolution from the tundra soils in response to 14C-glucose and -amino acid addition could best be described by a double first order exponential kinetic equation with rate constants k1 and k2. Both forms of DOC had a short half-life (t1/2) in the pool of microbial respiratory substrate (t1/2=1.07+or-0.10 h for glucose and 1.63+or-0.14 h for amino acids; exponential coefficient k1=0.93+or-0.07 and 0.64+or-0.06 h-1 respectively) whilst the second phase of mineralisation, assumed to be C that had entered the microbial biomass, was much slower (average k2=1.30x10-3+or-0.49x10-4 h-1). Temperature had little effect on the rate of mineralisation of 14C used directly as respiratory substrate. In contrast, the turnover rate of the 14C immobilized in the microbial biomass prior to mineralisation was temperature sensitive (k2 values of 0.99x10-3 h-1 and 1.66x10-3 h-1 at 4 and 20 degrees C respectively). Concentration-dependent glucose and amino acid mineralisation kinetics of glucose and amino acids (0-10 mM) were best described using Michaelis-Menten kinetics; there was a low affinity for both C substrates by the microbial community (Km=4.07+or-0.41 mM, Vmax=0.027+or-0.005 mmol kg-1 h-1). In conclusion, our results suggest that in these C limiting environments the flux of labile, low MW DOC through the soil solution is extremely rapid and relatively insensitive to temperature. In contrast, the turnover of C incorporated into higher molecular weight microbial C pools appears to show greater temperature sensitivity.
机译:极地生态系统目前正在经历一些最快的气候变暖速率。高北极地区土壤温度的升高可能会刺激土壤永冻土融化和微生物活动,从而加速温室气体的流失。因此,重要的是要了解调节极性土壤中碳转化速率的因素。因此,我们的目标是:(1)评估土壤中低分子量(MW)溶解的有机碳(DOC)的浓度,(2)研究特定的低MW化合物随温度变化的周转率,以及(3)分析底物浓度对碳循环的影响。使用掺有14 C标记的葡萄糖或氨基酸的土壤溶液,研究了两种高北极冻原土壤中不稳定的低分子量DOC的微生物矿化作用。将添加的溶液添加到两种生态系统类型(地衣和草皮为主的苔原)的表层和下层土壤中,并保持在三种温度(4-20摄氏度)下,并监测其微生物矿化动力学。响应于14 C-葡萄糖和-氨基酸添加而从苔原土壤中释放14 CO 2的方法,最好用速率常数为k1和k2的双一阶指数动力学方程来描述。两种形式的DOC在微生物呼吸底物库中的半衰期都很短(t1 / 2)(葡萄糖为t1 / 2 = 1.07 +或-0.10 h,氨基酸为1.63 + or-0.14 h;指数系数k1 =分别为0.93 + or-0.07和0.64 + or-0.06 h-1),而第二阶段矿化(假设是进入微生物生物质的C)则要慢得多(平均k2 = 1.30x10-3 + or-0.49x10 -4 h-1)。温度对直接用作呼吸基质的14 C矿化速率的影响很小。相反,在矿化之前固定在微生物生物量中的14C的转化率是温度敏感的(在4和20摄氏度时k2值分别为0.99x10-3 h-1和1.66x10-3 h-1)。使用Michaelis-Menten动力学可以最好地描述葡萄糖和氨基酸(0-10 mM)的浓度依赖性葡萄糖和氨基酸矿化动力学。微生物群落对两种C底物的亲和力均较低(Km = 4.07 +或-0.41 mM,Vmax = 0.027 +或-0.005 mmol kg-1 h-1)。总之,我们的结果表明,在这些碳限制环境中,不稳定的低分子量DOC通过土壤溶液的通量非常迅速,并且对温度相对不敏感。相反,掺入较高分子量微生物C池中的C的周转率似乎显示出更高的温度敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号