首页> 外文期刊>Soil Biology & Biochemistry >Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere.
【24h】

Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere.

机译:黑麦碎屑中凋落物碳周转和微生物丰度的动态。

获取原文
获取原文并翻译 | 示例
           

摘要

Factors determining C turnover and microbial succession at the small scale are crucial for understanding C cycling in soils. We performed a microcosm experiment to study how soil moisture affects temporal patterns of C turnover in the detritusphere. Four treatments were applied to small soil cores with two different water contents (matric potential of -0.0063 and -0.0316 MPa) and with or without addition of 13C labelled rye residues ( delta 13C=299 per mil), which were placed on top. Microcosms were sampled after 3, 7, 14, 28, 56 and 84 days and soil cores were separated into layers with increasing distance to the litter. Gradients in soil organic carbon, dissolved organic carbon, extracellular enzyme activity and microbial biomass were detected over a distance of 3 mm from the litter layer. At the end of the incubation, 35.6% of litter C remained on the surface of soils at -0.0063 MPa, whereas 41.7% remained on soils at -0.0316 MPa. Most of the lost litter C was mineralised to CO2, with 47.9% and 43.4% at -0.0063 and -0.0316 MPa, respectively. In both treatments about 6% were detected as newly formed soil organic carbon. During the initial phase of litter decomposition, bacteria dominated the mineralisation of easily available litter substrates. After 14 days fungi depolymerised more complex litter compounds, thereby producing new soluble substrates, which diffused into the soil. This pattern of differential substrate usage was paralleled by a lag phase of 3 days and a subsequent increase in enzyme activities. Increased soil water content accelerated the transport of soluble substrates, which influenced the temporal patterns of microbial growth and activity. Our results underline the importance of considering the interaction of soil microorganisms and physical processes at the small scale for the understanding of C cycling in soils.
机译:决定小规模C转换和微生物演替的因素对于理解土壤中的C循环至关重要。我们进行了一个微观实验,研究土壤水分如何影响碎屑层中碳更新的时间模式。将四种处理方法应用于具有两种不同含水量(单位电势为-0.0063和-0.0316 MPa)并且添加或不添加13C标记的黑麦残渣(δ13C = 299 / mil)的小土壤芯,将其置于顶部。在第3、7、14、28、56和84天后对微观世界进行采样,并将土壤核心分成与垫料距离增加的层。在距垫料层3 mm的距离内检测到土壤有机碳,溶解有机碳,细胞外酶活性和微生物生物量的梯度。孵育结束时,在-0.0063 MPa时,有35.6%的凋落物C留在土壤表面,而在-0.0316 MPa时,有41.7%的土壤凋落物仍然存在。大部分损失的凋落物C矿化为CO2,在-0.0063和-0.0316 MPa时分别为47.9%和43.4%。在这两种处理中,约有6%被检测为新形成的土壤有机碳。在垃圾分解的初始阶段,细菌控制着容易获得的垃圾底物的矿化作用。 14天后,真菌使更复杂的凋落物化合物解聚,从而产生新的可溶性底物,该底物扩散到土壤中。这种底物使用差异的模式与3天的滞后阶段和随后的酶活性增加平行。增加的土壤水分加速了可溶性底物的运输,这影响了微生物生长和活性的时间模式。我们的结果强调了考虑小范围土壤微生物与物理过程的相互作用对于理解土壤中碳循环的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号