...
首页> 外文期刊>Chembiochem: A European journal of chemical biology >The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis
【24h】

The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis

机译:LiuC的结构,一种参与3-氧-3-甲基-3-甲基谷氨酰辅酶A脱水酶的异戊酸辅酶A生物合成在黄色粘球菌,揭示了对特异性和催化作用的见解。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Myxobacteria are able to produce the important metabolite isovaleryl coenzymeA by a route other than leucine degradation. The first step into this pathway is mediated by LiuC, a member of the 3-methylglutaconyl CoA hydratases (MGCH). Here we present crystal structures refined to 2.05 and 1.1 angstrom of LiuC in the apo form and bound to coenzymeA, respectively. By using simulated annealing we modeled the enzyme substrate complex and identified residues potentially involved in substrate binding, specificity, and catalysis. The dehydration of 3-hydroxy-3-methylglutaconyl CoA to 3-methylglutaconyl CoA catalyzed by LiuC involves Glu112 and Glu132 and likely employs the typical crotonase acid-base mechanism. In this, Tyr231 and Arg69 are key players in positioning the substrate to enable catalysis. Surprisingly, LiuC shows higher sequence and structural similarity to human MGCH than to bacterial forms, although they convert the same substrate. This study provides structural insights into the alternative isovaleryl coenzymeA biosynthesis pathway and might open a path for biofuel research, as isovaleryl-CoA is a source for isobutene, a precursor for renewable fuels and chemicals.
机译:粘细菌能够通过亮氨酸降解以外的途径产生重要的代谢物异戊酰基辅酶A。进入该途径的第一步是由LiuC介导的,LiuC是3-甲基谷氨酰辅酶A水合酶(MGCH)的成员。在这里,我们介绍的晶体结构精制为apo形式的LiuC的2.05和1.1埃,并分别与辅酶A结合。通过使用模拟退火,我们对酶底物复合物进行了建模,并鉴定了可能与底物结合,特异性和催化有关的残基。 LiuC催化将3-羟基-3-甲基戊二酰基辅酶A脱水为3-甲基戊二酰基辅酶A涉及Glu112和Glu132,并且可能采用了典型的巴豆酶酸碱机制。在这种情况下,Tyr231和Arg69是定位底物以实现催化作用的关键角色。出人意料的是,尽管它们转化相同的底物,但LiuC与人MGCH相比在细菌形式上显示出更高的序列和结构相似性。这项研究为替代异戊酰辅酶A的生物合成途径提供了结构上的见解,并可能为生物燃料研究开辟道路,因为异戊酰辅酶A是异丁烯的来源,异丁烯是可再生燃料和化学物质的前体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号