...
首页> 外文期刊>Small >Nitrogen-Induced Surface Area and Conductivity Modulation of Carbon Nanohorn and Its Function as an Efficient Metal-Free Oxygen Reduction Electrocatalyst for Anion-Exchange Membrane Fuel Cells
【24h】

Nitrogen-Induced Surface Area and Conductivity Modulation of Carbon Nanohorn and Its Function as an Efficient Metal-Free Oxygen Reduction Electrocatalyst for Anion-Exchange Membrane Fuel Cells

机译:碳纳米角的氮诱导表面积和电导率调制及其作为阴离子交换膜燃料电池高效无金属氧还原电催化剂的功能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nitrogen-doped carbon morphologies have been proven to be better alternatives to Pt in polymer-electrolyte membrane (PEM) fuel cells. However, efficient modulation of the active sites by the simultaneous escalation of the porosity and nitrogen doping, without affecting the intrinsic electrical conductivity, still remains to be solved. Here, a simple strategy is reported to solve this issue by treating single-walled carbon nanohorn (SWCNH) with urea at 800 degrees C. The resulting nitrogen-doped carbon nanohorn shows a high surface area of 1836 m(2) g(-1) along with an increased electron conductivity, which are the pre-requisites of an electro catalyst. The nitrogen-doped nanohorn annealed at 800 degrees C (N-800) also shows a high oxygen reduction activity (ORR). Because of the high weight percentage of pyridinic nitrogen coordination in N-800, the present catalyst shows a clear 4-electron reduction pathway at only 50 mV overpotential and 16 mV negative shift in the half-wave potential for ORR compared to Pt/C along with a high fuel selectivity and electrochemical stability. More importantly, a membrane electrode assembly (MEA) based on N-800 provides a maximum power density of 30 mW cm(-2) under anion-exchange membrane fuel cell (AEMFC) testing conditions. Thus, with its remarkable set of physical and electrochemical properties, this material has the potential to perform as an efficient Pt-free electrode for AEMFCs.
机译:事实证明,在聚合物电解质膜(PEM)燃料电池中,氮掺杂的碳形态可以更好地替代Pt。然而,在不影响固有电导率的情况下,通过同时提高孔隙率和氮掺杂来有效调节活性部位仍然是有待解决的。在这里,据报道,一种简单的策略通过在800摄氏度下用尿素处理单壁碳纳米角(SWCNH)来解决此问题。所得的氮掺杂碳纳米角显示出1836 m(2)g(-1)的高表面积)以及增加的电子传导率,这是电催化剂的先决条件。在800℃(N-800)退火的氮掺杂纳米角也显示出高的氧还原活性(ORR)。由于N-800中吡啶氮配位的重量百分比很高,因此与Pt / C相比,本催化剂在ORR的半波电势中只有50 mV的超电势和16 mV的负移,显示出清晰的4电子还原途径。具有高的燃料选择性和电化学稳定性。更重要的是,基于N-800的膜电极组件(MEA)在阴离子交换膜燃料电池(AEMFC)测试条件下可提供30 mW cm(-2)的最大功率密度。因此,凭借其卓越的物理和电化学性能,该材料具有作为AEMFC的高效无铂电极的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号