...
首页> 外文期刊>Small >Novel Dome-Shaped Structures for High-Efficiency Patterning of Individual Microbeads in a Microfluidic Device
【24h】

Novel Dome-Shaped Structures for High-Efficiency Patterning of Individual Microbeads in a Microfluidic Device

机译:新型圆顶状结构的微流控设备中的单个微珠高效图案化。

获取原文
获取原文并翻译 | 示例

摘要

Recently, microfluidic systems have attracted a large amount of interest in various biological-assay applications.[1] Among numerous claims of advantages over conventional methods, short assay times and the low reagent volume required have been well demonstrated and established by researchers. Several papers have published assay times ranging from 30 s to 74 min and many required a volume 10-times less than conventional assays.[2]-[8] In addition, bead-based microfluidic devices possess an edge over normal fluidic systems as it employs microbeads as a solid support. There are three main advantages in the use of these microbeads. Firstly, the surface-to-volume ratio is greatly increased even in a microfluidic device. For example, one gram of microbeads with a diameter of 0.1 m has a total surface area of about 60 m2.[9] As a result, the sensitivity of assays is increased due to higher efficiency of interactions between samples and reagents.[10] Secondly, the analytes attached to the beads can be easily transported in a fluidic system using pressure-driven flow or electric fields. Finally, and most importantly, there are a variety of surface modifications available on these microbeads, which introduce multiple functionalities to a single microfluidic design. Therefore, DNA, RNA, antibodies, antigens, and a vast number of other biological molecules can be easily attached to the microbeads for transport and analysis in a fluidic system.[11]-[15] These added benefits induced by the incorporation of microbeads prompted researchers to devise many different strategies to immobilize beads in microchannels.[16] Andersson et al. fabricated a grid of pillars by deep reactive ion etching to confine the beads for reaction,[17] and Sato et al. constructed a dam for the entrapment of polystyrene beads in an immunosorbent assay.[18] Instead of building physical structures to trap the microbeads, an external magnetic field can be utilized to capture paramagnetic beads in a microfluidic system.[19], [20] Alternatively, the surface of microchannels can be modified by microcontact printing with binding proteins complementary to other proteins attached to the beads.[21] All of the above strategies have similar aims to concentrate the microbeads in a confined area for processing and analysis.
机译:最近,微流体系统在各种生物测定应用中引起了广泛的兴趣。[1]在众多优于传统方法的主张中,研究人员已充分证明并确立了较短的测定时间和所需的低试剂体积。几篇论文发表的分析时间从30 s到74分钟不等,许多论文所需的体积比传统分析方法少10倍。[2]-[8]此外,基于微珠的微流体装置比常规流体系统更具优势使用微珠作为固体支持物。这些微珠的使用具有三个主要优点。首先,即使在微流体装置中,表面体积比也大大增加。例如,一克直径为0.1 m的微珠的总表面积约为60 m2。[9]结果,由于样品和试剂之间更高的相互作用效率,测定的灵敏度得以提高。[10]其次,附着在珠子上的分析物可以使用压力驱动的流动或电场在流体系统中轻松运输。最后,也是最重要的是,这些微珠具有多种表面修饰,可将多种功能引入单个微流体设计中。因此,DNA,RNA,抗体,抗原和大量其他生物分子可以很容易地附着到微珠上,以便在流体系统中进行运输和分析。[11]-[15]通过掺入微珠而带来的这些额外好处。促使研究人员设计出许多不同的策略将微珠固定在微通道中。[16]安德森(Andersson)等人。 [17]和Sato等人通过深反应离子刻蚀制造了一个柱状网格,以限制反应珠。在免疫吸附试验中建造了一个挡住聚苯乙烯珠的水坝。[18]代替建立物理结构来捕获微珠,可以利用外部磁场捕获微流体系统中的顺磁珠。[19],[20]或者,可以通过微接触印刷用与蛋白质互补的结合蛋白来修饰微通道的表面。珠子上附着的其他蛋白质。[21]所有上述策略都具有相似的目的,即将微珠集中在狭窄的区域内进行处理和分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号