首页> 外文期刊>Small >All-Oxide Raman-Active Traps for Light and Matter: Probing Redox Homeostasis Model Reactions in Aqueous EnvironmentAll-Oxide Raman-Active Traps for Light and Matter: Probing Redox Homeostasis Model Reactions in Aqueous Environment
【24h】

All-Oxide Raman-Active Traps for Light and Matter: Probing Redox Homeostasis Model Reactions in Aqueous EnvironmentAll-Oxide Raman-Active Traps for Light and Matter: Probing Redox Homeostasis Model Reactions in Aqueous Environment

机译:用于光和物质的全氧化物拉曼活性阱:在水环境中探测氧化还原稳态模型反应。用于光和物质的全氧化物拉曼活性阱:在水环境中探测氧化还原稳态模型反应。

获取原文
获取原文并翻译 | 示例
       

摘要

Developing new tools to investigate chemical reactions under real working conditions is a hot topic in many research fields~([1]) Vibrational spectroscopy (infrared and Raman) can provide insightful information about intra- and interatomic bonds and physico-chemical processes dynamics (redox and acid-base reactions, conformational changes, etc.). This capability offers several advantages over other ultra-sensitive techniques like fluorescent tags or mass-based sensors,for example in terms of chemical specificity and low invasiveness. However, in the case of reactions taking place in aqueous environment, like biological or biomimetic processes, the usefulness of infrared spectroscopy is severely limited by the strong contribution of water vibrational modes, that can overwhelm the analyte signals. In particular, the -OH stretching and bending modes can mask most of the spectral information about proteins or small biomolecules. Due to its relative insensitivity to water, Raman can be a valid alternative to IR, yet the very low Raman cross-sections of many analytes restrict the range of application of this technique to few cases involving resonant chromophores or labelling Raman reporters. Surface enhanced Raman scattering (SERS) takes advantage of surface plasmon-polaritons to increase the Raman cross-section of analytes that are either physisorbed or covalently linked to metal nanop articles. ~([2]) This coupling is the key factor to achieve ultrasensitive detection of the analytes and real-time monitoring of their concentration, but in most of the cases inherently introduces a strong perturbation to the system under analysis. The intense electromagnetic fields generated and dissipated through radiative~([3]) and non-radiative (heat)~([4]) channels in a typical SERS experiment can significantly alter both structure and reactivity of biological analytes (e.g. by promoting protein denaturation and/or interfering with chemical reactions involving charge transfer or, in general, any complex pathways).~([5]) Analogous effects can also originate from the chemical conjugation of the analyte with colloidal nanoparticles used as SERS-active substrates, which can be directed or mediated by means of linker and spacers.~([6]) In both the cases, denaturation of the analytes and/or passivation of some of their reactive moieties are unavoidable shortcomings.
机译:开发研究实际工作条件下化学反应的新工具是许多研究领域的热门话题〜[[1])振动光谱法(红外和拉曼光谱)可以提供有关原子内和原子间键以及理化过程动力学(氧化还原)的深入信息。和酸碱反应,构象变化等)。与其他超敏感技术(例如荧光标签或基于质量的传感器)相比,此功能具有多个优势,例如在化学特异性和低侵入性方面。但是,在诸如生物或仿生过程之类的水性环境中发生反应的情况下,水振动模式的强大作用严重限制了红外光谱的实用性,水的振动模式可能会使分析物信号不堪重负。特别是,-OH拉伸和弯曲模式可以掩盖有关蛋白质或小生物分子的大多数光谱信息。由于拉曼对水相对不敏感,因此可以替代红外,但许多分析物的拉曼截面非常低,因此该技术的应用范围仅限于少数涉及共振发色团或标记拉曼报道分子的情况。表面增强拉曼散射(SERS)利用表面等离振子-极化子来增加被金属纳米制品物理吸附或共价连接的分析物的拉曼横截面。 〜([2])这种耦合是实现对分析物进行超灵敏检测并实时监测其浓度的关键因素,但是在大多数情况下,固有地会给分析中的系统带来强烈的干扰。在典型的SERS实验中,通过辐射〜([3])和非辐射(热)〜([4])通道产生和消散的强电磁场可以显着改变生物分析物的结构和反应性(例如,通过促进蛋白质变性)和(或)干扰涉及电荷转移的化学反应,或一般而言,干扰任何复杂的途径。)[(5))类似的影响也可能源于分析物与用作SERS活性底物的胶体纳米粒子的化学结合。 ([6])在两种情况下,分析物的变性和/或其某些反应性部分的钝化都是不可避免的缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号