...
首页> 外文期刊>Smart Materials & Structures >Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control
【24h】

Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control

机译:寻找NEMO(新型电子材料肌肉振荡器):由聚吡咯驱动的具有实时无线速度和方向控制的机器人鱼

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s~(-1) (or 0.25 body lengths s~(-1)) and was achieved with a flapping frequency of 0.6-0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors.
机译:本文介绍了一种自主驱动和控制的机器人鱼的开发,该鱼包括一个主动挠性接头尾鳍,该尾鳍通过导电的基于聚吡咯(PPy)的聚合物致动器来激活。通过改变提供给PPy弯曲型执行器的电压信号的频率和占空比,可以实时无线控制鱼上的新型电材料肌肉振荡器(NEMO)尾鳍组件。通过改变输入到NEMO尾鳍上的电压的占空比来实现方向控制,这改变了振荡轴并使机器人鱼得以转动。在低速下,机器鱼的转弯半径小至15厘米(或1.1体长)。鱼机器人的最高速度估计约为33毫米s〜(-1)(或0.25体长s〜(-1)),并以0.6-0.8 Hz的拍动频率实现,这也对应于尾鳍操作的流体动力学高效模式。该速度大约是任何以前报道的基于人工肌肉的设备的速度的十倍,后者也提供实时速度和方向控制。这项研究为先前发表的有关生物启发功能设备的研究做出了贡献,证明了电活性聚合物致动器可以替代传统的致动手段,例如电动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号