...
首页> 外文期刊>Smart Materials & Structures >Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)
【24h】

Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

机译:使用磁致伸缩材料(MsM)的基于振动的能量收集器的优化设计

获取原文
获取原文并翻译 | 示例

摘要

In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 μW, giving a power density of 279 μW cm-3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 μW and the corresponding power density is 202 μW cm~(-3). The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.
机译:在这项研究中,设计并测试了使用磁致伸缩材料(MsM)的基于振动的最佳能量收集系统,以实现无线传感器的供电。特别地,从磁能转换为电能的转换效率是根据由束振动引起的磁场近似建模的。在设计优化中分析和探索了许多影响输出功率的因素,例如MsM层数,线圈设计和负载匹配。根据测量,当MsM悬臂梁以第二固有频率324 Hz工作时,开路电压可以达到1.5V。交流输出功率为970μW,功率密度为279μWcm-3。还尝试分析和测试了使用电抗性组件(电感器或电容器)在任何频率下使系统谐振的尝试。结果表明,这种方法无法优化功耗。由于MsM器件具有低输出电压特性,因此已经设计了全波四倍频器来提高整流后的输出电压。为了向负载提供最大输出功率,使用不连续传导模式(DCM)降压-升压转换器实现了负载与MsM设备之间的复共轭阻抗匹配。四倍频后的直流输出功率达到705μW,对应的功率密度为202μWcm〜(-3)。传递给锂可充电电池的输出功率约为630μW,与负载电阻无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号