首页> 外文期刊>Smart Materials & Structures >Principle, design and modeling of an integrated relative displacement self-sensing magnetorheological damper based on electromagnetic induction
【24h】

Principle, design and modeling of an integrated relative displacement self-sensing magnetorheological damper based on electromagnetic induction

机译:基于电磁感应的集成相对位移自感磁流变阻尼器的原理,设计与建模

获取原文
获取原文并翻译 | 示例
       

摘要

In order to make full use of the controllable damping characteristics of magnetorheological (MR) dampers, feedback control of the damping forces for MR dampers is necessary, which needs extra dynamic response sensors and control systems as active control systems do. The extra dynamic response sensors for semi-active control of the MR dampers will increase the application cost of MR dampers, occupy the installation space, complicate the system, and decrease the reliability. In this paper, an integrated relative displacement sensor (IRDS) technology to make MR dampers self-sensing based on electromagnetic induction, and the principle of an integrated relative displacement self-sensing MR damper (IRDSMRD) based on the IRDS technology, are introduced. The IRDSMRD mainly comprises an exciting coil wound on the piston and an induction coil wound on the nonmagnetic cylinder. In the IRDSMRD, the coil wound on the piston simultaneously acts as the exciting coils of the MR fluid and the IRDS while the coil wound on the cylinder acts as the induction coil of the IRDS. The MR fluid in the annular fluid channel and the IRDS are simultaneously energized by the exciting coil through letting the carrier of the IRDS (AC) possess different frequency from the current for the MR fluid (DC), which realizes the frequency division multiplexing of the exciting coil. Based on the proposed principle for the IRDS and IRDSMRD, an IRDSMRD is designed and modeled and the damping and sensing performances of the designed and developed IRDSMRD are also modeled and analyzed using the finite element method (FEM) with the software package Maxwell 2D. The research results indicate that the function of the relative displacement sensing property can be integrated into MR dampers, and the designed IRDSMRD possesses large controllable damping ratio and good relative displacement sensing performance utilizing the IRDS technology proposed in this paper.
机译:为了充分利用磁流变(MR)阻尼器的可控阻尼特性,需要对MR阻尼器的阻尼力进行反馈控制,这需要像主动控制系统一样的额外动态响应传感器和控制系统。用于MR阻尼器半主动控制的额外动态响应传感器会增加MR阻尼器的应用成本,占用安装空间,使系统复杂化并降低可靠性。本文介绍了一种基于电磁感应的MR阻尼器自感应的集成相对位移传感器技术,以及基于IRDS技术的MRDS阻尼器自感应集成技术的原理。 IRDSMRD主要包括缠绕在活塞上的励磁线圈和缠绕在非磁性气缸上的感应线圈。在IRDSMRD中,缠绕在活塞上的线圈同时充当MR流体和IRDS的励磁线圈,而缠绕在气缸上的线圈则充当IRDS的感应线圈。通过使IRDS(AC)的载体具有与MR流体(DC)的电流不同的频率,环形流体通道和IRDS中的MR流体同时由励磁线圈激励,从而实现了MR流体的频分复用。励磁线圈。基于IRDS和IRDSMRD的建议原理,对IRDSMRD进行了设计和建模,还使用有限元方法(FEM)和软件包Maxwell 2D对设计和开发的IRDSMRD的阻尼和传感性能进行了建模和分析。研究结果表明,相对位移传感性能可以集成到MR阻尼器中,利用本文提出的IRDS技术,设计的IRDSMRD具有较大的可控阻尼比和良好的相对位移传感性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号