首页> 外文期刊>Smart Materials & Structures >Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA
【24h】

Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA

机译:相变对SMA断裂参数影响的实验和计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

A comprehensive, multi-method experimental characterization of fracture is conducted on shape memory alloy NiTi that exhibits superelasticity due to austenite-to-martensite stress induced phase transformation. This characterization includes (i) load-based measurement of critical stress intensity factor (K-max) using ASTM standard E399, (ii) measurement of crack tip opening displacement (CTOD) per ASTM standard E1290, (iii) the digital image correlation (DIC) characterization of the transformation zone as well as the displacement-field based measurement of K-max from the DIC data. Samples have also been tested at T = 100 degrees C to suppress the martensitic transformation to investigate transformation toughening. The experimental investigation is complemented with finite element (FE) analysis that uses Auricchio-Taylor-Lubliner constitutive model. A direct observation with DIC revealed a small scale transformation (K-dominance). K-max of the transforming material is higher than that of the transformation-suppressed material tested at 100 degrees C, suggesting transformation toughening. At 100 degrees C, the material becomes quite brittle with a very small crack-tip plastic zone when the transformation mechanism is blocked. By measures of critical CTOD, the gap widens even more between the superelastic and transformation-suppressed cases, particularly because of the side effect that, in this very interesting material, material modulus increases with temperature. Evaluating the transformation zone from the DIC strains with reference to the uniaxial stress-strain curve, an equivalent strain form is proposed in conjunction with the plane stress FE prediction.
机译:对形状记忆合金NiTi进行了断裂的综合,多方法实验表征,该合金由于奥氏体到马氏体应力引起的相变而显示出超弹性。此表征包括(i)使用ASTM标准E399基于载荷的临界应力强度因子(K-max)测量,(ii)根据ASTM标准E1290测量裂纹尖端张开位移(CTOD),(iii)数字图像相关性( DIC)表征转换区,以及根据DIC数据基于位移场的K-max测量。还已经在T = 100摄氏度下测试了样品,以抑制马氏体相变以研究相变韧化。实验研究辅以使用Auricchio-Taylor-Lubliner本构模型的有限元(FE)分析进行补充。用DIC进行的直接观察显示出小规模的转变(K主导)。相变材料的K-max高于在100摄氏度下测试的相变抑制材料的K-max,表明相变韧化。在100摄氏度时,当转变机制受阻时,材料会变得非常脆,只有很小的裂纹尖端塑性区。通过临界CTOD的测量,在超弹性和抑制变形的情况之间的间隙更大,特别是由于副作用,在这种非常有趣的材料中,材料模量随温度增加。参照单轴应力-应变曲线从DIC应变评估转换区,结合平面应力FE预测,提出了等效应变形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号