...
首页> 外文期刊>SIAM Journal on Scientific Computing >FFT, FMM, OR MULTIGRID? A COMPARATIVE STUDY OF STATE-OF-THE-ART POISSON SOLVERS FOR UNIFORM AND NONUNIFORM GRIDS IN THE UNIT CUBE
【24h】

FFT, FMM, OR MULTIGRID? A COMPARATIVE STUDY OF STATE-OF-THE-ART POISSON SOLVERS FOR UNIFORM AND NONUNIFORM GRIDS IN THE UNIT CUBE

机译:FFT,FMM还是MULTIGRID?单元立方体中均匀和非均匀网格的最新泊松解的比较研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

From molecular dynamics and quantum chemistry, to plasma physics and computational astrophysics, Poisson solvers in the unit cube are used in many applications in computational science and engineering. In this work, we benchmark and discuss the performance of the scalable methods for the Poisson problem which are used widely in practice: the fast Fourier transform (FFT), the fast multipole method (FMM), the geometric multigrid (GMG), and algebraic multigrid (AMG). Our focus is on solvers supporting high-order, highly nonuniform discretizations. To allow comparisons with standard libraries we also compare adaptive solvers with solvers specialized for problems on regular grids, that is, FFT and regular-stencil multigrid, since both are very popular algorithms for several practical applications. For the multigrid, we use the finite element variant of a high-performance geometric multigrid (HPGMG) benchmark. In total we compare five different codes, three of which are developed in our group. Our FFT, GMG, and FMM are parallel solvers that use high-order approximation schemes for Poisson problems with continuous forcing functions (the source or right-hand side). Our FFT code is based on the FFTW for single node parallelism. The AMG code is from the Trilinos library from the Sandia National Laboratory. Our GMG and FMM support octree based mesh refinement and variable coefficients and enable highly nonuniform discretizations. The GMG actually also supports complex (noncubic) geometries using a forest of octrees. We examine and report results for weak scaling, strong scaling, and time to solution for uniform and highly refined grids. We present results on the Stampede system at the Texas Advanced Computing Center and on the Titan system at the Oak Ridge National Laboratory. In our largest test case, we solved a problem with 600 billion unknowns on 229,379 cores of Titan. Overall, all methods scale quite well to these problem sizes. We have tested all of the methods with different source functions (the right-hand side in the Poisson problem). Our results indicate that FFT is the method of choice for smooth source functions that require uniform resolution. However, FFT loses its performance advantage when the source function has highly localized features like internal sharp layers. FMM and GMG considerably outperform FFT for those cases. The distinction between FMM and GMG is less pronounced and is sensitive to the quality (from a performance point of view) of the underlying implementations. The high-order accurate versions of GMG and FMM significantly outperform their low-order accurate counterparts.
机译:从分子动力学和量子化学,到等离子体物理学和计算天体物理学,单位立方中的泊松求解器在计算科学和工程学中被广泛应用。在这项工作中,我们对在实际中广泛使用的Poisson问题的可伸缩方法的性能进行基准测试和讨论:快速傅立叶变换(FFT),快速多极子方法(FMM),几何多重网格(GMG)和代数多网格(AMG)。我们的重点是支持高阶,高度非均匀离散的求解器。为了与标准库进行比较,我们还将自适应解算器与专门解决常规网格问题的解算器(即FFT和常规模板多重网格)进行了比较,因为这两种算法在许多实际应用中都是非常流行的算法。对于多重网格,我们使用高性能几何多重网格(HPGMG)基准测试的有限元变体。我们总共比较了五个不同的代码,其中三个是我们小组中开发的。我们的FFT,GMG和FMM是并行求解器,它们对具有连续强迫函数(源或右侧)的泊松问题使用高阶近似方案。我们的FFT代码基于FFTW的单节点并行性。 AMG代码来自桑迪亚国家实验室的Trilinos库。我们的GMG和FMM支持基于八叉树的网格细化和可变系数,并实现高度不均匀的离散化。 GMG实际上还使用八叉树森林来支持复杂(非三次)几何形状。我们检查并报告弱缩放,强缩放以及统一和高度精炼网格的求解时间。我们将在德克萨斯高级计算中心的Stampede系统上以及橡树岭国家实验室的Titan系统上展示结果。在最大的测试案例中,我们解决了在229,379个Titan内核上存在6,000亿个未知数的问题。总体而言,所有方法都可以很好地解决这些问题的规模。我们已经用不同的源函数(泊松问题的右侧)测试了所有方法。我们的结果表明,对于需要统一分辨率的平滑源函数,FFT是一种选择方法。但是,当源函数具有高度局部化的功能(例如内部尖锐层)时,FFT就会失去其性能优势。在这些情况下,FMM和GMG明显优于FFT。 FMM与GMG之间的区别不太明显,并且对基础实现的质量(从性能角度而言)很敏感。 GMG和FMM的高阶精度版本明显优于其低阶精度版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号