首页> 外文期刊>SIAM Journal on Scientific Computing >Computational study of the dispersively modified Kuramoto-Sivashinsky equation
【24h】

Computational study of the dispersively modified Kuramoto-Sivashinsky equation

机译:色散修正Kuramoto-Sivashinsky方程的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

We analyze and implement fully discrete schemes for periodic initial value problems for a general class of dispersively modified Kuramoto-Sivashinsky equations. Time discretizations are constructed using linearly implicit schemes and spectral methods are used for the spatial discretization. The general case analyzed covers several physical applications arising in multiphase hydrodynamics and the emerging dynamics arise from a competition of long-wave instability (negative diffusion), short-wave damping (fourth order stabilization), nonlinear saturation (Burgers nonlinearity), and dispersive effects. The solutions of such systems typically converge to compact absorbing sets of finite dimension (i.e., global attractors) and are characterized by chaotic behavior. Our objective is to employ schemes which capture faithfully these chaotic dynamics. In the general case the dispersive term is taken to be a pseudodifferential operator which is allowed to have higher order than the familiar fourth order stabilizing term in the Kuramoto-Sivashinsky equation. In such instances we show that first and second order time-stepping schemes are appropriate and provide convergence proofs for the schemes. In physical situations when the dispersion is of lower order than the fourth order stabilization term (for example, a hybrid Kuramoto-Sivashinsky-Korteweg-deVries equation also known as the Kawahara equation in hydrodynamics), higher order time-stepping schemes can be used and we analyze and implement schemes of order six or less. We derive optimal order error estimates throughout and utilize the schemes to compute the long time dynamics and to characterize the attractors. Various numerical diagnostic tools are implemented, such as the projection of the infinite-dimensional dynamics to one-dimensional return maps that enable us to probe the geometry of the attractors quantitatively. Such results are possible only if computations are carried out for very long times (we provide examples where integrations are carried out for 10 ~8 time units), and it is shown that the schemes used here are very well suited for such tasks. For illustration, computations are carried out for third order dispersion (the Kawahara equation) as well as fifth order dispersion (the Benney-Lin equation) but the methods developed here are applicable for rather general dispersive terms with similar accuracy characteristics.
机译:我们分析并实现了针对一类色散修正的Kuramoto-Sivashinsky方程的周期初始值问题的完全离散方案。使用线性隐式方案构造时间离散化,并且将频谱方法用于空间离散化。分析的一般案例涵盖了多相流体动力学中的几种物理应用,新兴的动力学是由长波不稳定性(负扩散),短波阻尼(四阶稳定),非线性饱和(Burgers非线性)和色散效应的竞争引起的。这种系统的解决方案通常收敛到有限尺寸的紧凑吸收集(即整体吸引子),并且具有混沌行为。我们的目标是采用能够忠实捕获这些混沌动力学的方案。在一般情况下,色散项被视为伪微分算子,该伪微分算子被允许具有比Kuramoto-Sivashinsky方程中熟悉的四阶稳定项更高的阶。在这种情况下,我们表明一阶和二阶时间步长方案是适当的,并为方案提供了收敛证明。在色散低于四阶稳定项的物理情况下(例如,流体动力学中的混合Kuramoto-Sivashinsky-Korteweg-deVries方程也称为Kawahara方程),可以使用更高阶的时间步长方案,并我们分析并实施六阶以下的计划。我们始终得出最佳的阶次误差估计,并利用这些方案来计算长时间的动力学并表征吸引子。实现了各种数字诊断工具,例如将无穷维动力学投影到一维返回图,这使我们能够定量地探测吸引子的几何形状。这样的结果只有在计算时间很长的情况下才有可能(我们提供了以10〜8个时间单位进行积分的示例),并且表明此处使用的方案非常适合此类任务。为了说明起见,对三阶色散(Kawahara方程)和五阶色散(Benney-Lin方程)进行了计算,但此处开发的方法适用于具有相似精度特征的相当普遍的色散项。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号