首页> 外文期刊>Separation and Purification Technology >Column dynamics of an adsorption-drying-desorption process for butanol recovery from aqueous solutions with silicalite pellets
【24h】

Column dynamics of an adsorption-drying-desorption process for butanol recovery from aqueous solutions with silicalite pellets

机译:硅胶沸石颗粒从水溶液中回收丁醇的吸附-干燥-解吸过程的塔动力学

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of this work is to study the column dynamics of an adsorption-drying-desorption (ADD) process for recovering butanol from diluted aqueous solutions with silicalite pellets. In the adsorption step, the butanol from the aqueous solution is adsorbed onto the column up to saturation. In the drying step, the column previously saturated with the butanol aqueous mixture is purged with air at low temperature (323-343 K). During this step the unbound liquid (liquid not adsorbed filling pipes and interstices with the same concentration as the feed mixture) is removed. In the desorption step, the column is heated at high temperature (403-423 K) and purged with air, for recovering the butanol adsorbed in the silicalite crystals by condensation. The experimental results show that the butanol can be recovered with 98% (w/w) purity from dilute aqueous solutions (0.5-2% w/w). A theoretical model has been proposed to describe the adsorption step. Another theoretical model has been developed to describe the concentration and temperature profiles of the drying and desorption steps. Both models have been validated with experimental data. The last model has been used to estimate the energy consumption of the drying and desorption steps of an ADD process considering compression, heating and refrigeration requirements. Simulations results show that it is possible to recover butanol from diluted aqueous mixtures using an ADD process with high recovery (95%), and with an energy requirement significantly lower (about 3.4 MJ kg~(-1)) than the energy content of butanol (36 MJ kg~(-1)).
机译:这项工作的目的是研究一种吸附-干燥-解吸(ADD)工艺的柱动力学,该工艺用于从含硅沸石颗粒的稀释水溶液中回收丁醇。在吸附步骤中,来自水溶液的丁醇被吸附到色谱柱上直至饱和。在干燥步骤中,将预先用丁醇水溶液混合物饱和的柱在低温(323-343 K)下用空气吹扫。在该步骤中,去除未结合的液体(未吸收液体的填充管和与进料混合物浓度相同的间隙)。在解吸步骤中,将柱在高温(403-423 K)下加热并用空气吹扫,以通过冷凝回收吸附在硅沸石晶体中的丁醇。实验结果表明,可以从稀水溶液(0.5-2%w / w)中以98%(w / w)的纯度回收丁醇。已经提出了描述吸附步骤的理论模型。已经开发出另一种理论模型来描述干燥和解吸步骤的浓度和温度曲线。两种模型均已通过实验数据验证。考虑到压缩,加热和制冷要求,最后一个模型已用于估算ADD工艺干燥和解吸步骤的能耗。模拟结果表明,采用ADD工艺可以从稀释的含水混合物中回收丁醇,回收率高(95%),所需能量比丁醇的能量含量低得多(约3.4 MJ kg〜(-1))。 (36 MJ公斤〜(-1))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号