...
首页> 外文期刊>Separation and Purification Technology >CFD study on separation enhancement of mini-hydrocyclone by particulate arrangement
【24h】

CFD study on separation enhancement of mini-hydrocyclone by particulate arrangement

机译:颗粒排列增强微型水力旋流器分离的CFD研究

获取原文
获取原文并翻译 | 示例

摘要

Several mini-hydrocyclones are designed to improve fine particle separation using computational fluid dynamics. This article based on the idea of particle arrangements at the entrance of a hydrocyclone, designed a common mini-hydrocyclone (CM-hydrocyclone), positive rotation mini-hydrocyclone (PRM-hydrocyclone), with particle size increasing from the inside to the wall at the entrance, and a reverse rotation mini-hydrocyclone (RRM-hydrocyclone), which with an opposite-particle arrangement. The particles' arrangement and separation-strengthening mechanism are studied with FLUENT software. The governing equations are coupled using the SIMPLE algorithm, while the Reynolds Stress Model is employed for the hydrocyclone turbulent model due to its anisotropic nature. Particle trajectories are simulated based on a Lagrangian frame considering continuous phase interactions. The results show that the particles closer to the outer wall or to the lower part of the entrance tend to be separated with the underflow. The particles injected from upside of the inlet tend to be trapped in the under-cover flow with a long path and get discharged with the shortcut flow. The main separation zone for the mini-hydrocyclone located in the region between the vortex finder tip and the upper quarter of the cone. Particle arrangements at the entrance of hydrocyclone have a significant impact on separation efficiency of fine particles. RRM-hydrocyclone with particle size that increases from the wall to the inside of the entrance can improve separation efficiency. RRM-hydrocyclone demonstrated 83% separation efficiency when the average particle size is 0.53 μm. This is much higher than the values demonstrated by CM-hydrocyclone and PRM-hydrocyclone. However, PRM-hydrocyclone, with particle size that decreases from the wall to the inside of the entrance, can eliminate short circuit flow.
机译:设计了几种微型水力旋流器,以利用计算流体动力学来改善细颗粒的分离。本文基于水力旋流器入口处颗粒排列的想法,设计了一种常见的小型水力旋流器(CM-水力旋流器),正旋转式小型水力旋流器(PRM-水力旋流器),其粒径从内到外逐渐增大。入口处,还有一个反向旋转的微型水力旋流器(RRM-hydrocyclone),它具有相反的粒子排列。用FLUENT软件研究了颗粒的排列和分离强化机理。控制方程使用SIMPLE算法进行耦合,而雷诺应力模型由于其各向异性特性而被用于水力旋流器湍流模型。基于拉格朗日框架,考虑了连续的相位相互作用,模拟了粒子轨迹。结果表明,更靠近外壁或靠近入口下部的颗粒倾向于与底流分离。从入口上方注入的颗粒倾向于以较长的路径被捕集到下覆层流中,并随捷径流而被排出。小型水力旋流器的主要分离区位于涡流探测器尖端和圆锥上半部之间的区域。水力旋流器入口处的颗粒排列对细颗粒的分离效率有重大影响。从入口的壁到内部增加粒径的RRM-水力旋流器可以提高分离效率。当平均粒径为0.53μm时,RRM-水力旋流器显示出83%的分离效率。这远远高于CM-水力旋流器和PRM-水力旋流器的数值。但是,PRM-水力旋流器的粒径从壁到入口的内部减小,可以消除短路流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号