首页> 外文期刊>Separation and Purification Technology >A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes
【24h】

A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes

机译:一种新型的模型方程,用于通过Pd-Ag膜渗透氢气与一氧化碳混合物

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hydrogen permeance decrease, owing to the covalent interaction of carbon monoxide with the Pd-Ag membrane surface, represents a considerable drawback, since this decreases the efficiency of the alloy membranes. This work proposes a novel Sieverts-Langmuir's model taking into account the mentioned adsorption. The proposed model equation, in order to take into account the fraction of the membrane surface not active for hydrogen permeation, introduces Langmuir's isotherm, which is the surface loading in the classical Sieverts' permeation equation. The evaluation of the α parameter and the Langmuir affinity constant involved in the proposed model was carried out using experimental data measured using a 60 μm thick Pd-Ag commercial membrane at 647 K (374 °C), up to a total pressure of 700 kPa. The presented model yields, in a parametric form, a quantitative assessment of hydrogen permeance decrease caused by the adsorption of gases on Pd-Ag membrane surfaces. Therefore, this novel Sieverts-Langmuir's equation models hydrogen permeation through Pd-Ag-based membranes in the presence of inhibitor gases such as CO. In addition, by ab initio evaluation of the α and the Langmuir affinity constant, the proposed Sieverts-Langmuir's equation can identify a new membrane with better efficiency.
机译:由于一氧化碳与Pd-Ag膜表面的共价相互作用,氢渗透率降低代表了相当大的缺点,因为这降低了合金膜的效率。这项工作提出了一种新的Sieverts-Langmuir模型,其中考虑了上述吸附。为了考虑到膜表面对氢渗透没有活性的部分,建议的模型方程引入了朗缪尔等温线,这是经典Sieverts渗透方程中的表面载荷。使用在60 Km厚的Pd-Ag商业膜上在647 K(374°C)高达700 kPa的压力下测得的实验数据对所建议模型中涉及的α参数和Langmuir亲和常数进行了评估。 。所提出的模型以参数形式产生了由气体在Pd-Ag膜表面吸附引起的氢渗透率降低的定量评估。因此,这个新颖的Sieverts-Langmuir方程可模拟存在抑制剂气体(例如CO)时通过Pd-Ag基膜的氢渗透情况。此外,通过从头开始评估α和Langmuir亲和常数,提出的Sieverts-Langmuir方程可以识别出效率更高的新膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号